Complex, non-monotonic dose-response curves with multiple maxima: Do we (ever) sample densely enough?
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26336980
PubMed Central
PMC4883946
DOI
10.1080/15592324.2015.1062198
Knihovny.cz E-resources
- Keywords
- Nyquist theorem, auxin, cytokinin, dose-response curve, multiple maxima, non-linearity, sampling frequency, sucrose,
- MeSH
- Biological Phenomena * MeSH
- Brassica physiology MeSH
- Nicotiana physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We usually expect the dose-response curves of biological responses to quantifiable stimuli to be simple, either monotonic or exhibiting a single maximum or minimum. Deviations are often viewed as experimental noise. However, detailed measurements in plant primary tissue cultures (stem pith explants of kale and tobacco) exposed to varying doses of sucrose, cytokinins (BA or kinetin) or auxins (IAA or NAA) revealed that growth and several biochemical parameters exhibit multiple reproducible, statistically significant maxima over a wide range of exogenous substance concentrations. This results in complex, non-monotonic dose-response curves, reminiscent of previous reports of analogous observations in both metazoan and plant systems responding to diverse pharmacological treatments. These findings suggest the existence of a hitherto neglected class of biological phenomena resulting in dose-response curves exhibiting periodic patterns of maxima and minima, whose causes remain so far uncharacterized, partly due to insufficient sampling frequency used in many studies.
doi: 10.1007/s11738-014-1573-1 PubMed
See more in PubMed
Calabrese EJ. Origin of the linearity no threshold (LNT) dose-response concept. Arch Toxicol 2013; 87: 1621-33; PMID:23887208; http://dx.doi.org/10.1007/s00204-013-1104-7 PubMed DOI
Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 2013; 7: 323-37; PMID:22263604; http://dx.doi.org/10.3109/17435390.2012.658094 PubMed DOI
Boerjan W, Genetello C, Van Montagu M, Inze D. A new bioassay for auxins and cytokinins. Plant Physiol 1992; 99: 1090-8; PMID:16668975 PubMed PMC
Rietveld PL, Wilkinson C, Franssen HM, Balk PA, van der Plas LH, Weisbeek PJ, Douwe de Boer A. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin. J Exp Bot 2000; 51: 587-94; PMID:10938815 PubMed
Christian M, Hannah WB, Lüthen H, Jones AM. Identification of auxins by a chemical genomics approach. J Exp Bot 2008; 59: 2757-67; PMID:18515827; http://dx.doi.org/10.1093/jxb/ern133 PubMed DOI PMC
Vyas A, Kim SK, Sapolsky RM. The effects of toxoplasma infection on rodent behavior are dependent on dose of the stimulus. Neuroscience 2007; 148: 342-8; PMID:17683872; http://dx.doi.org/10.1016/j.neuroscience.2007.06.021 PubMed DOI PMC
Weik M. Nyquist theorem Computer Science and Communications Dictionary, Springer, 2001, p. 1127; ISBN 978-0-7923-8425-0; http://dx.doi.org/10.1007/1-4020-0613-6_12654 DOI
Luštinec J, Cvrčková F, Čížková J, Doležel J, Kamínek M, Žárský V: Multiple, concentration-dependent effects of sucrose, auxins and cytokinins in explant cultures of kale and tobacco. Acta Physiol Plant 2114; 36: 1981-91; http://dx.doi.org/10.1007/s11738-014-1573-1 DOI
Nissen P. Uptake mechanisms: inorganic and organic. Annu Rev Plant Physiol 1974. 25: 53-79.
Nissen P. Multiphasic uptake mechanisms in plants. Int Rev Cytol 1991; 126: 89-134.
Schistad IJ, Nissen P. Cytokinin-induced retention of chlorophyll in senescing barley leaves: complexity of dose response. Physiol Plant 1984, 61: 566-570.
Andrade AJ, Grande SW, Talsness CE, Grote K, Chahoud I. A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): non-monotonic dose-response and low dose effects on rat brain aromatase activity. Toxicology 2006; 227: 185-92; PMID:16949715 PubMed
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33: 378-455; PMID:22419778; http://dx.doi.org/10.1210/er.2011-1050 PubMed DOI PMC
Viñas R, Jeng YJ, Watson CS. Non-genomic effects of xenoestrogen mixtures. Int J Environ Res Public Health 2012; 9: 2694-714; PMID:23066391; http://dx.doi.org/10.3390/ijerph9082694 PubMed DOI PMC
Fong PP, Ford AT. The biological effects of antidepressants on the molluscs and crustaceans: a review. Aquat Toxicol 2014; 151: 4-13; PMID:24374179; http://dx.doi.org/10.1016/j.aquatox.2013.12.003 PubMed DOI
Luštinec J, Hadačová V, Kamínek M. The effect of various cytokinins and auxins on starch formation in kale and tobacco explants In: Schreiber K, Schutte HR, Sembdner G (eds) Biochemistry and chemistry of plant growth regulators. Inst Biochem Pflanz, Halle, 1974, pp. 311-313.
Luštinec J, Kamínek M, Hadačová V. Hormonal control of starch accumulation and cell expansion in tobacco stem pith. Acta Univ Nicolai Copernici 1976; 18: 117-120.
Luštinec J. Uptake and dose responses of auxin in vitro: multiphasic concentration-dependencies In: Kutáček M, Bandurski RS, Krekule J (eds) Physiology and biochemistry of auxins in plants. Academia, Praha: 1988, pp. 241-246.
Berridge MJ, Rapp PE. A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol 1979, 81: 217-79; PMID:390080 PubMed
Goldbeter A. Biochemical oscillators and cellular rhythms: the molecular base of periodic and chaotic behaviour. Cambridge University Press, Cambridge, 1996; ISBN 0-521-40307-3.
Torii KU. Two-dimensional spatial patterning in developmental systems. Trends Cell Biol 2012; 22: 438-46; PMID:22789547; http://dx.doi.org/10.1016/j.tcb.2012.06.002 PubMed DOI
Goldbeter A, Gérard C, Gonze D, Leloup JC, Dupont G. Systems biology of cellular rhythms. FEBS Lett 2012; 586: 2955-65; PMID:22841722; http://dx.doi.org/10.1016/j.febslet.2012.07.041 PubMed DOI
Gérard C, Tyson JJ, Coudreuse D, Novák B. Cell cycle control by a minimal cdk network. PLoS Comput Biol 2015; 11: e1004056; PMID:25658582; http://dx.doi.org/10.1371/journal.pcbi.1004056 PubMed DOI PMC
Kim Y. Regulation of cell proliferation and migration in glioblastoma: new therapeutic approach. Front. Oncol. 2013; 3: 53; PMID:23508546; http://dx.doi.org/10.3389/fonc.2013.00053 PubMed DOI PMC
Angeli D, Ferrell JE, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 2004; 101: 1822-7. PMID:14766974 PubMed PMC