Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase

. 2015 Oct 13 ; 112 (41) : 12586-91. [epub] 20150928

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26417103

For sexual communication, moths primarily use blends of fatty acid derivatives containing one or more double bonds in various positions and configurations, called sex pheromones (SPs). To study the molecular basis of novel SP component (SPC) acquisition, we used the tobacco hornworm (Manduca sexta), which uses a blend of mono-, di-, and uncommon triunsaturated fatty acid (3UFA) derivatives as SP. We identified pheromone-biosynthetic fatty acid desaturases (FADs) MsexD3, MsexD5, and MsexD6 abundantly expressed in the M. sexta female pheromone gland. Their functional characterization and in vivo application of FAD substrates indicated that MsexD3 and MsexD5 biosynthesize 3UFAs via E/Z14 desaturation from diunsaturated fatty acids produced by previously characterized Z11-desaturase/conjugase MsexD2. Site-directed mutagenesis of sequentially highly similar MsexD3 and MsexD2 demonstrated that swapping of a single amino acid in the fatty acyl substrate binding tunnel introduces E/Z14-desaturase specificity to mutated MsexD2. Reconstruction of FAD gene phylogeny indicates that MsexD3 was recruited for biosynthesis of 3UFA SPCs in M. sexta lineage via gene duplication and neofunctionalization, whereas MsexD5 representing an alternative 3UFA-producing FAD has been acquired via activation of a presumably inactive ancestral MsexD5. Our results demonstrate that a change as small as a single amino acid substitution in a FAD enzyme might result in the acquisition of new SP compounds.

Zobrazit více v PubMed

Johansson BG, Jones TM. The role of chemical communication in mate choice. Biol Rev Camb Philos Soc. 2007;82(2):265–289. PubMed

Paterson HEH. The recognition concept of species. In: Vrba ES, editor. Species and Speciation. Transvaal Museum; Pretoria, South Africa: 1985.

Phelan PL. Evolution of sex pheromones and the role of asymmetric tracking. In: Roitberg BD, Isman MB, editors. Insect Chemical Ecology: An Evolutionary Approach. Chapman & Hall; New York: 1992. pp. 265–314.

Smadja C, Butlin RK. On the scent of speciation: The chemosensory system and its role in premating isolation. Heredity (Edinb) 2009;102(1):77–97. PubMed

Niehuis O, et al. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature. 2013;494(7437):345–348. PubMed

Shirangi TR, Dufour HD, Williams TM, Carroll SB. Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS Biol. 2009;7(8):e1000168. PubMed PMC

Roelofs WL, et al. Evolution of moth sex pheromones via ancestral genes. Proc Natl Acad Sci USA. 2002;99(21):13621–13626. PubMed PMC

Lassance J-M, et al. Functional consequences of sequence variation in the pheromone biosynthetic gene pgFAR for Ostrinia moths. Proc Natl Acad Sci USA. 2013;110(10):3967–3972. PubMed PMC

Groot AT, et al. Within-population variability in a moth sex pheromone blend: Genetic basis and behavioural consequences. Proc Biol Sci. 2014;281(1779):20133054. PubMed PMC

El-Sayed (2014) The Pherobase: Database of Pheromones and Semiochemicals. Available at www.pherobase.com.

Roelofs WL, Rooney AP. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc Natl Acad Sci USA. 2003;100(16):9179–9184. PubMed PMC

Jurenka RA, Haynes KF, Adlof RO, Bengtsson M, Roelofs WL. Sex pheromone component ratio in the cabbage looper moth altered by a mutation affecting the fatty acid chain-shortening reactions in the pheromone biosynthetic pathway. Insect Biochem Mol Biol. 1994;24(4):373–381.

Tabata J, Ishikawa Y. Genetic basis to divergence of sex pheromones in two closely related moths, Ostrinia scapulalis and O. zealis. J Chem Ecol. 2005;31(5):1111–1124. PubMed

Wang H-L, Liénard MA, Zhao CH, Wang CZ, Löfstedt C. Neofunctionalization in an ancestral insect desaturase lineage led to rare Δ6 pheromone signals in the Chinese tussah silkworm. Insect Biochem Mol Biol. 2010;40(10):742–751. PubMed

Xue B, Rooney AP, Kajikawa M, Okada N, Roelofs WL. Novel sex pheromone desaturases in the genomes of corn borers generated through gene duplication and retroposon fusion. Proc Natl Acad Sci USA. 2007;104(11):4467–4472. PubMed PMC

Fujii T, et al. Sex pheromone desaturase functioning in a primitive Ostrinia moth is cryptically conserved in congeners’ genomes. Proc Natl Acad Sci USA. 2011;108(17):7102–7106. PubMed PMC

Albre J, et al. Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths. PLoS Genet. 2012;8(1):e1002489. PubMed PMC

Matousková P, Pichová I, Svatoš A. Functional characterization of a desaturase from the tobacco hornworm moth (Manduca sexta) with bifunctional Z11- and 10,12-desaturase activity. Insect Biochem Mol Biol. 2007;37(6):601–610. PubMed

Fang N, Teal PEA, Doolittle RE, Tumlinson JH. Biosynthesis of conjugated olefinic systems in the sex pheromone gland of female tobacco hornworm moths, Manduca sexta (L.) Insect Biochem Mol Biol. 1995;25(1):39–48.

Bai Y, et al. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature. 2015;524(7564):252–256. PubMed PMC

Wang H, et al. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat Struct Mol Biol. 2015;22(7):581–585. PubMed

Schneiter R, Tatzer V, Gogg G, Leitner E, Kohlwein SD. Elo1p-dependent carboxy-terminal elongation of C14:1Delta(9) to C16:1Delta(11) fatty acids in Saccharomyces cerevisiae. J Bacteriol. 2000;182(13):3655–3660. PubMed PMC

Shi B, Davis BH. Gas chromatographic separation of pairs of isotopic molecules. J Chromatogr A. 1993;654(2):319–325.

Tumlinson JH, Teal PE, Fang N. The integral role of triacyl glycerols in the biosynthesis of the aldehydic sex pheromones of Manduca sexta (L) Bioorg Med Chem. 1996;4(3):451–460. PubMed

Knipple DC, Rosenfield C-L, Nielsen R, You KM, Jeong SE. Evolution of the integral membrane desaturase gene family in moths and flies. Genetics. 2002;162(4):1737–1752. PubMed PMC

Fujii T, et al. Discovery of a disused desaturase gene from the pheromone gland of the moth Ascotis selenaria, which secretes an epoxyalkenyl sex pheromone. Biochem Biophys Res Commun. 2013;441(4):849–855. PubMed

Tumlinson JH, et al. Identification of a pheromone blend attractive to Manduca sexta (L.) males in a wind tunnel. Arch Insect Biochem Physiol. 1989;10(4):255–271.

Liénard MA, et al. Elucidation of the sex-pheromone biosynthesis producing 5,7-dodecadienes in Dendrolimus punctatus (Lepidoptera: Lasiocampidae) reveals Delta 11- and Delta 9-desaturases with unusual catalytic properties. Insect Biochem Mol Biol. 2010;40(6):440–452. PubMed

Lim ZL, Senger T, Vrinten P. Four amino acid residues influence the substrate chain-length and regioselectivity of Siganus canaliculatus Δ4 and Δ5/6 desaturases. Lipids. 2014;49(4):357–367. PubMed

Meesapyodsuk D, Qiu X. Structure determinants for the substrate specificity of acyl-CoA Δ9 desaturases from a marine copepod. ACS Chem Biol. 2014;9(4):922–934. PubMed

Rawat R, Yu XH, Sweet M, Shanklin J. Conjugated fatty acid synthesis: Residues 111 and 115 influence product partitioning of Momordica charantia conjugase. J Biol Chem. 2012;287(20):16230–16237. PubMed PMC

Leary GP, et al. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci USA. 2012;109(35):14081–14086. PubMed PMC

Große-Wilde E, et al. Sex-specific odorant receptors of the tobacco hornworm manduca sexta. Front Cell Neurosci. 2010;4:7. PubMed PMC

Vogel H, Badapanda C, Knorr E, Vilcinskas A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. Insect Mol Biol. 2014;23(1):98–112. PubMed

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–580. PubMed

Dereeper A, et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36(Web Server issue):W465–W469. PubMed PMC

Buček A, Matoušková P, Sychrová H, Pichová I, Hrušková-Heidingsfeldová O. Δ12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. PLoS One. 2014;9(3):e93322. PubMed PMC

Frost CG, Penrose SD, Gleave R. Rhodium catalysed conjugate addition of a chiral alkenyltrifluoroborate salt: the enantioselective synthesis of hermitamides A and B. Org Biomol Chem. 2008;6(23):4340–4347. PubMed

Oonishi Y, Mori M, Sato Y. Rhodium(I)-catalyzed intramolecular hydroacylation of 4,6-dienals: Novel synthesis of cycloheptenones. Synthesis (Stuttg) 2007;2007(15):2323–2336. PubMed

Gagnon D, Lauzon S, Godbout C, Spino C. Sterically biased 3,3-sigmatropic rearrangement of azides: Efficient preparation of nonracemic α-amino acids and heterocycles. Org Lett. 2005;7(21):4769–4771. PubMed

Stille JK, Simpson JH. Stereospecific palladium-catalyzed coupling reactions of vinyl iodides with acetylenic tin reagents. J Am Chem Soc. 1987;109(10):2138–2152.

Svatoš A, Kalinová B, Boland W. Stereochemistry of lepidopteran sex pheromone biosynthesis: A comparison of fatty acid-CoA Δ11-(Z)-desaturases in Bombyx mori and Manduca sexta female moths. Insect Biochem Mol Biol. 1999;29(3):225–232.

Krieger E, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins. 2009;77(Suppl 9):114–122. PubMed PMC

Moto K, et al. Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of the silkmoth, Bombyx mori, sex pheromone. Proc Natl Acad Sci USA. 2004;101(23):8631–8636. PubMed PMC

Butenandt A, Beckmann R, Stamm D, Hecker E. Über den sexuallockstoff des seidenspinners Bombyx mori. Reindarstellung und konstitution. Z Naturforsch B. 1959;14:283–284.

Zobrazit více v PubMed

GENBANK
AM158251, KP890026, KP890030

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...