Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
LM2018099
Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.02.1.01/0.0/0.0/16_025/0007370
Ministerstvo Školství, Mládeže a Tělovýchovy - International
GAJU 097/2019/Z
Grantová agentura Jihočeské univerzity v Českých Budějovicích - International
095/2017/ZBlahova
Grantová agentura Jihočeské univerzity v Českých Budějovicích - International
PubMed
32023831
PubMed Central
PMC7072455
DOI
10.3390/biom10020206
PII: biom10020206
Knihovny.cz E-zdroje
- Klíčová slova
- AA, DHA, EPA, LC-PUFA, essential fatty acid, fatty acyl desaturase, fish, health, long-chain polyunsaturated fatty acid, transgene, Δ6 - desaturase, ω3, ω6,
- MeSH
- desaturasy mastných kyselin chemie metabolismus MeSH
- fylogeneze MeSH
- genetické inženýrství MeSH
- nenasycené mastné kyseliny chemie MeSH
- regulace genové exprese MeSH
- rybí proteiny chemie metabolismus MeSH
- ryby * MeSH
- substrátová specifita MeSH
- transgeny MeSH
- vodní hospodářství MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- desaturasy mastných kyselin MeSH
- nenasycené mastné kyseliny MeSH
- rybí proteiny MeSH
Fatty acid desaturase 2 (Fads2) is the key enzyme of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis. Endogenous production of these biomolecules in vertebrates, if present, is insufficient to meet demand. Hence, LC-PUFA are considered as conditionally essential. At present, however, LC-PUFA are globally limited nutrients due to anthropogenic factors. Research attention has therefore been paid to finding ways to maximize endogenous LC-PUFA production, especially in production species, whereby deeper knowledge on molecular mechanisms of enzymatic steps involved is being generated. This review first briefly informs about the milestones in the history of LC-PUFA essentiality exploration before it focuses on the main aim-to highlight the fascinating Fads2 potential to play roles fundamental to adaptation to novel environmental conditions. Investigations are summarized to elucidate on the evolutionary history of fish Fads2, providing an explanation for the remarkable plasticity of this enzyme in fish. Furthermore, structural implications of Fads2 substrate specificity are discussed and some relevant studies performed on organisms other than fish are mentioned in cases when such studies have to date not been conducted on fish models. The importance of Fads2 in the context of growing aquaculture demand and dwindling LC-PUFA supply is depicted and a few remedies in the form of genetic engineering to improve endogenous production of these biomolecules are outlined.
Zobrazit více v PubMed
Tocher D.R., Betancor M.B., Sprague M., Olsen R.E., A Napier J. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients. 2019;11:89. doi: 10.3390/nu11010089. PubMed DOI PMC
Bell M.V., Tocher D.R. Lipids in Aquatic Ecosystems. Springer; New York, NY, USA: 2009. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: General pathways and new directions; pp. 211–236.
Tinoco J. Dietary requirements and functions of α-linolenic acid in animals. Prog. Lipid Res. 1982;21:1–45. doi: 10.1016/0163-7827(82)90015-7. PubMed DOI
Monroig Ó., Kabeya N. Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: A comprehensive review. Fish. Sci. 2018;84:911–928. doi: 10.1007/s12562-018-1254-x. DOI
Kabeya N., Fonseca M.M., Ferrier D.E.K., Navarro J.C., Bay L.K., Francis D.S., Tocher D.R., Castro L.F.C., Monroig O. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 2018;4:eaar6849. doi: 10.1126/sciadv.aar6849. PubMed DOI PMC
Jakobsson A., Westerberg R., Jacobsson A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid Res. 2006;45:237–249. doi: 10.1016/j.plipres.2006.01.004. PubMed DOI
Zárate R., El Jaber-Vazdekis N., Tejera N., Pérez J.A., Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017;6:25. doi: 10.1186/s40169-017-0153-6. PubMed DOI PMC
Spector A.A., Kim H.Y. Discovery of essential fatty acids. J. Lipid Res. 2015;56:11–21. doi: 10.1194/jlr.R055095. PubMed DOI PMC
Burr G.O., Burr M.M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J. Biol. Chem. 1929;82:345–367. doi: 10.1111/j.1753-4887.1973.tb06008.x. PubMed DOI
Burr G.O., Burr M.M. On the nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 1930;86:587–621.
Burr G.O., Burr M.M., Miller E.S. On the fatty acids essentiality in nutrition III. J. Biol. Chem. 1932;97:1–9.
Holman R.T., George O. Burr and the Discovery of Essential Fatty Acids. J. Nutr. 1988;118:535–540. doi: 10.1093/jn/118.5.535. PubMed DOI
Mead J. The essential fatty acids: Past, present and future. Prog. Lipid Res. 1981;20:1–6. doi: 10.1016/0163-7827(81)90007-2. PubMed DOI
Bergström S., Danielsson H., Klenberg D., Samuelsson B. The enzymatic conversion of essential fatty acids into prostaglandins. J. Biol. Chem. 1964;239:PC4006–PC4008. PubMed
Bergström S., Danielsson H., Samuelsson B. The enzymatic formation of prostaglandin E2 from arachidonic acid prostaglandins and related factors 32. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1964;90:207–210. doi: 10.1016/0304-4165(64)90145-X. PubMed DOI
Klenk E., Mohrhauer H. Metabolism of polyenoic acids in the rat. Hoppe Seylers Z. Physiol. Chem. 1960;320:218–232. doi: 10.1515/bchm2.1960.320.1.218. PubMed DOI
Dyerberg J., Bang H. Dietary fat and thrombosis. Lancet. 1978;311:152. doi: 10.1016/S0140-6736(78)90448-8. PubMed DOI
Dyerberg J., Bang H.O., Stoffersen E., Moncada J., Vane J.R. Eicosapentaenoic acid and the prevention of thrombosis and atherosclerosis? Lancet. 1978;2:117–119. doi: 10.1016/S0140-6736(78)91505-2. PubMed DOI
Simopoulos A.P. The omega-6/omega-3 fatty acid ratio: Health implications. Oléagineux, Corps gras. Lipides. 2010;17:267–275.
Simopoulos A.P. Importance of the omega-6/omega-3 balance in health and disease: Evolutionary aspects of diet. World Rev. Nutr. Diet. 2011;102:10–21. doi: 10.1159/000327785. PubMed DOI
Scaioli E., Liverani E., Belluzzi A. The Imbalance between n-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. Int. J. Mol. Sci. 2017;18:2619. doi: 10.3390/ijms18122619. PubMed DOI PMC
Gladyshev M.I., Sushchik N.N. Long-chain Omega-3 Polyunsaturated Fatty Acids in Natural Ecosystems and the Human Diet: Assumptions and Challenges. Biomolecules. 2019;9:485. doi: 10.3390/biom9090485. PubMed DOI PMC
Voss A., Reinhart M., Sankarappa S., Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Boil. Chem. 1991;266:19995–20000. PubMed
Sprecher H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta (BBA)—Mol. Cell Boil. Lipids. 2000;1486:219–231. doi: 10.1016/S1388-1981(00)00077-9. PubMed DOI
Monroig O., Li Y., Tocher D.R. Delta-8 desaturation activity varies among fatty acyl desaturases of teleost fish: High activity in delta-6 desaturases of marine species. Comp. Biochem. Physiol. Part. B Biochem. Mol. Boil. 2011;159:206–213. doi: 10.1016/j.cbpb.2011.04.007. PubMed DOI
Carmona-Antoñanzas G., Monroig O., Dick J.R., Davie A., Tocher D.R. Biosynthesis of very long-chain fatty acids (C > 24) in Atlantic salmon: Cloning, functional characterisation, and tissue distribution of an Elovl4 elongase. Comp. Biochem. Physiol. Part. B Biochem. Mol. Boil. 2011;159:122–129. doi: 10.1016/j.cbpb.2011.02.007. PubMed DOI
Trattner S. Ph.D. Thesis. Acta Universitatis Agriculturae Sueciae; Uppsala, Sweden: May, 2009. Quality of lipids in fish fed vegetable oils.
Vestergeren A.L.S. Ph.D. Thesis. Swedish University of Agricultural Sciences; Uppsala, Sweden: Dec, 2014. Transcriptional regulation in salmonids with emphasis on lipid metabolism.
Yin Y. Master´s Thesis. Norwegian University of Live Sciences; Ås, Norway: Sep, 2016. Expression of genes involved in regulation of polyunsaturated fatty acid metabolism in liver of Atlantic salmon (Salmo salar) undergoing parr-smolt transformation.
Ferdinandusse S., Denis S., Mooijer P.A., Zhang Z., Reddy J.K., Spector A.A., Wanders R.J. Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J. Lipid Res. 2001;42:1987–1995. PubMed
Sprecher H. A reevaluation of the pathway for the biosynthesis of 4,7,10,13,16,19-docosahexaenoic acid. Omega-3 News. 1992;7:1–3.
Li Y., Monroig O., Zhang L., Wang S., Zheng X., Dick J.R., You C., Tocher U.R. Vertebrate fatty acyl desaturase with Δ4 activity. Proc. Natl. Acad. Sci. USA. 2010;107:16840–16845. doi: 10.1073/pnas.1008429107. PubMed DOI PMC
Oboh A., Kabeya N., Carmona-Antoñanzas G., Castro L.F.C., Dick J.R., Tocher U.R., Monroig O. Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish. Sci. Rep. 2017;7:3889. doi: 10.1038/s41598-017-04288-2. PubMed DOI PMC
Guillou H., Zadravec D., Martin P.G., Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 2010;49:186–199. doi: 10.1016/j.plipres.2009.12.002. PubMed DOI
Tocher D.R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 2010;41:717–732. doi: 10.1111/j.1365-2109.2008.02150.x. DOI
Tocher D.R., Zheng X., Schlechtriem C., Hastings N., Dick J.R., Teale A.J. Highly unsaturated fatty acid synthesis in marine fish: Cloning, functional characterization, and nutritional regulation of fatty acyl Δ6 desaturase of Atlantic cod (Gadus morhua L.) Lipids. 2006;41:1003–1016. doi: 10.1007/s11745-006-5051-4. PubMed DOI
Zheng X., Seiliez I., Hastings N., Tocher D., Panserat S., Dickson C., Bergot P., Teale A. Characterization and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species. Comp. Biochem. Physiol. Part. B Biochem. Mol. Boil. 2004;139:269–279. doi: 10.1016/j.cbpc.2004.08.003. PubMed DOI
Zheng X., King Z., Xu Y., Monroig Ó., Morais S., Tocher D.R. Physiological roles of fatty acyl desaturases and elongases in marine fish: Characterization of cDNAs of fatty acyl Δ6-desaturase and Elovl5 elongase of cobia (Rachycentron canadum) Aquaculture. 2009;290:122–131. doi: 10.1016/j.aquaculture.2009.02.010. DOI
Leaver M.J., Bautista J.M., Björnsson B.T., Jönsson E., Krey G., Tocher D.R., Torstensen B.E. Towards Fish Lipid Nutrigenomics: Current State and Prospects for Fin-Fish Aquaculture. Rev. Fish. Sci. 2008;16:73–94. doi: 10.1080/10641260802325278. DOI
Gillard G., Harvey T.N., Gjuvsland A., Jin Y., Thomassen M., Lien S., Leaver M., Torgersen J.S., Hvidsten T.R., Vik J.O., et al. Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon. Mol. Ecol. 2018;27:1200–1213. doi: 10.1111/mec.14533. PubMed DOI
Ren H.-T., Zhang G.-Q., Li J.-L., Tang Y.-K., Li H.-X., Yu J.-H., Xu P. Two Δ6-desaturase-like genes in common carp (Cyprinus carpio var. Jian): Structure characterization, mRNA expression, temperature and nutritional regulation. Gene. 2013;525:11–17. doi: 10.1016/j.gene.2013.04.073. PubMed DOI
Lopes-Marques M., Kabeya N., Qian Y., Ruivo R., Santos M.M., Venkatesh B., Tocher D.R., Castro L.F.C., Monroig Ó. Retention of fatty acyl desaturase 1 (fads1) in Elopomorpha and Cyclostomata provides novel insights into the evolution of long-chain polyunsaturated fatty acid biosynthesis in vertebrates. BMC Evol. Boil. 2018;18:157 PubMed PMC
Wang S., Monroig Ó., Tang G., Zhang L., You C., Tocher D.R., Li Y. Investigating long-chain polyunsaturated fatty acid biosynthesis in teleost fish: Functional characterization of fatty acyl desaturase (Fads2) and Elovl5 elongase in the catadromous species, Japanese eel Anguilla japonica. Aquaculture. 2014;434:57–65.
Hastings N., Agaba M., Tocher U.R., Leaver M.J., Dick J.R., Sargent J.R., Teale A.J. A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Proc. Natl. Acad. Sci. USA. 2001;98:14304–14309. doi: 10.1073/pnas.251516598. PubMed DOI PMC
Castro L.F.C., Monroig Ó., Leaver M.J., Wilson J., Cunha I., Tocher U.R. Functional Desaturase Fads1 (Δ5) and Fads2 (Δ6) Orthologues Evolved before the Origin of Jawed Vertebrates. PLoS ONE. 2012;7:e31950. doi: 10.1371/journal.pone.0031950. PubMed DOI PMC
Kabeya N., Yoshizaki G., Tocher D.R., Monroig Ó. Investigación y Desarollo en Nutrición Acuícola. Universidad Autónoma de Nuevo León; San Nicolás de los Garza, Nuevo León, México: 2017. Diversification of Fads2 in Finfish Species: Implications for Aquaculture; pp. 338–362.
Zheng X., Tocher D.R., Dickson C.A., Bell J.G., Teale A.J. Highly unsaturated fatty acid synthesis in vertebrates: New insights with the cloning and characterization of a Δ6 desaturase of Atlantic salmon. Lipids. 2005;40:13–24. doi: 10.1007/s11745-005-1355-7. PubMed DOI
Seiliez I., Panserat S., Kaushik S., Bergot P. Cloning, tissue distribution and nutritional regulation of a Delta6-desaturaselike enzyme in rainbow trout. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001;130:83–93. doi: 10.1016/S1096-4959(01)00410-9. PubMed DOI
Cho H.P., Nakamura M.T., Clarke S.D. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 1999;274:471–477. doi: 10.1074/jbc.274.1.471. PubMed DOI
Guillou H., D’Andrea S., Rioux V., Barnouin R., Dalaine S., Pedrono F., Jan S., Legrand P. Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat Delta6-desaturase activity. J. Lipid Res. 2004;45:32–40. doi: 10.1194/jlr.M300339-JLR200. PubMed DOI
Mitchell A.G., Martin C.E. A novel cytochrome b5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae delta-9 fatty acid desaturase. J. Biol. Chem. 1995;270:29766–29772. PubMed
Dahmen J.L., Olsen R., Fahy D., Wallis G.J., Browse J. Cytochrome b5 coexpression increases Tetrahymena thermophila Δ6 fatty acid desaturase activity in Saccharomyces Cerevisiae. Eukaryot. Cell. 2013;12:923–931. doi: 10.1128/EC.00332-12. PubMed DOI PMC
Gostinčar C., Turk M., Gunde-Cimerman N. The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J. Membr. Biol. 2010;233:63–72. doi: 10.1007/s00232-010-9225-x. PubMed DOI
Wang H., Klein M.G., Zhou H., Lane W., Snell G., Levin I., Li K., Sang B.C. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat. Struct. Mol. Biol. 2015;22:581–585. doi: 10.1038/nsmb.3049. PubMed DOI
Bai Y., McCoy J.G., Levin E.J., Sobrado P., Rajashankar K.R., Fox B.G., Zhou M. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature. 2015;524:252–256. doi: 10.1038/nature14549. PubMed DOI PMC
Sayanova O., Beaudoin F., Libisch B., Castel A., Shewry P.R., Napier J.A. Mutagenesis and heterologous expression in yeast of a plant Delta6-fatty acid desaturase. J. Exp Bot. 2001;52:1581–1585. doi: 10.1093/jexbot/52.360.1581. PubMed DOI
Hashimoto K., Yoshizawa A.C., Okuda S., Kuma K., Goto S., Kanehisa M. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lipid Res. 2007;49:183–191. doi: 10.1194/jlr.M700377-JLR200. PubMed DOI
Watanabe K., Ohno M., Taguchi M., Kawamoto S., Ono K., Aki T. Identification of amino acid residues that determine the substrate specificity of mammalian membrane-bound front-end fatty acid desaturases. J. Lipid Res. 2016;57:89–99. doi: 10.1194/jlr.M064121. PubMed DOI PMC
Buček A., Matoušková P., Vogel H., Šebesta P., Jahn U., Weissflog J., Svatoš A., Pichová I. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase. Proc. Natl. Acad. Sci. USA. 2015;112:12586–12591. doi: 10.1073/pnas.1514566112. PubMed DOI PMC
Shi H., Wu R., Zheng Y., Yue X. Molecular mechanism underlying catalytic activity of delta 6 desaturase from Glossomastix chrysoplasta and Thalassiosira pseudonana. J. Lipid Res. 2018;56:2309–2321. doi: 10.1194/jlr.M079806. PubMed DOI PMC
Jin Y., Olsen R.E., Harvey T.N., Ostensen M.A., Li K., Santi N., Vadstein O., Vik J.O., Sandve S.R., Olsen Y. Comparative transcriptomics reveals domestication-associated features of Atlantic salmon lipid metabolism. [(accessed on 20 January 2020)];bioRxiv. 2019 doi: 10.1101/847848. Available online: https://www.biorxiv.org/content/10.1101/847848v1.full.pdf. PubMed DOI
Xie D., Fu Z., Wang S., You C., Monroig O., Tocher D.R., Li Y. Characteristics of the fads2 gene promoter in marine teleost Epinephelus coioides and role of Sp1-binding site in determining promoter activity. Sci. Rep. 2018;8:5305. doi: 10.1038/s41598-018-23668-w. PubMed DOI PMC
Geay F., Santigosa I.C.E., Corporeau C., Boudry P., Dreano Y., Corcos L., Bodin N., Vandeputte M., Zambonino-Infante J.L., Mazurais D., et al. Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax L.) fed a vegetable diet. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010;156:237–243. doi: 10.1016/j.cbpb.2010.03.008. PubMed DOI
Geay F., Zambonino-Infante J., Reinhardt R., Kuhl H., Santigosa E., Cahu C., Mazurais D. Characteristics of fads2 gene expression and putative promoter in European sea bass (Dicentrarchus labrax): Comparison with salmonid species and analysis of CpG methylation. Mar. Genomics. 2012;5:7–13. doi: 10.1016/j.margen.2011.08.003. PubMed DOI
Ishikawa A., Kabeya N., Ikeya K., Kakioka R., Cech J.N., Osada N., Leal M.C., Inoue J., Kume M., Toyoda A., et al. A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science. 2019;364:886–889. doi: 10.1126/science.aau5656. PubMed DOI
Tocher D.R. Issues surrounding fish as a source of omega-3 long-chain polyunsaturated fatty acids. Lipid Technol. 2009;21:13–16. doi: 10.1002/lite.200800079. DOI
Napier J.A., Usher S., Haslam R.P., Ruiz-Lopez N., Sayanova O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur. J. Lipid Sci Technol. 2015;117:1317–1324. doi: 10.1002/ejlt.201400452. PubMed DOI PMC
Maclean N., Laight R.J. Transgenic fish: An evaluation of benefits and risks. Fish Fish. 2001;1:146–172. doi: 10.1046/j.1467-2979.2000.00014.x. DOI
Yoshizaki G., Kiron V., Satoh S., Takeuchi T. Expression of masou salmon delta5-desaturase-like gene elevated EPA and DHA biosynthesis in zebrafish. Mar. Biotechnol. 2007;9:92–100. doi: 10.1007/s10126-006-6003-y. PubMed DOI
Gladyshev M.I., Sushchik N.N., Tolomeev A.P., Dgebuadze Y.Y. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev. Fish. Biol Fish. 2018;28:277–299. doi: 10.1007/s11160-017-9511-0. DOI
Cheng Q., Su B., Qin Z., Weng C.C., Yin F., Zhou Y., Fobes M., Perera D.A., Shang M., Soller F., et al. Interaction of diet and the masou salmon Δ5-desaturase transgene on Δ6-desaturase and stearoyl-CoA desaturase gene expression and N-3 fatty acid level in common carp (Cyprinus carpio) Transgenic Res. 2014;23:729–742. doi: 10.1007/s11248-014-9812-1. PubMed DOI
Bugg W. Master’s Thesis. Auburn University; Auburn, Alabama: May 7, 2017. The effects of the masou salmon delta5-desaturase transgene on N-3 fatty acid production in F1 transgenic common carp (Cyprinus carpio) and channel catfish (Ictalurus punctatus)
Zhang X., Pang S., Liu C., Wang H., Ye D., Zhu Z., Sun Y. A novel dietary source of EPA and DHA: Metabolic engineering of an important freshwater species—common carp by fat1-transgenesis. Mar. Biotechnol. 2019;21:171–185. doi: 10.1007/s10126-018-9868-7. PubMed DOI
Hendersen R.J., Tocher D.R. The lipid composition and biochemistry of freshwater fish. Prog Lipid Res. 1987;26:281–347. doi: 10.1016/0163-7827(87)90002-6. PubMed DOI
Zhu G., Jiang X., Ou Q., Zhang T., Wang M., Sun G., Wang Z., Sun J., Ge T. Enhanced Production of Docosahexaenoic Acid in Mammalian Cells. PLoS ONE. 2014;9:e96503. doi: 10.1371/journal.pone.0096503. PubMed DOI PMC