Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering

. 2020 Jan 31 ; 10 (2) : . [epub] 20200131

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32023831

Grantová podpora
LM2018099 Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.02.1.01/0.0/0.0/16_025/0007370 Ministerstvo Školství, Mládeže a Tělovýchovy - International
GAJU 097/2019/Z Grantová agentura Jihočeské univerzity v Českých Budějovicích - International
095/2017/ZBlahova Grantová agentura Jihočeské univerzity v Českých Budějovicích - International

Fatty acid desaturase 2 (Fads2) is the key enzyme of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis. Endogenous production of these biomolecules in vertebrates, if present, is insufficient to meet demand. Hence, LC-PUFA are considered as conditionally essential. At present, however, LC-PUFA are globally limited nutrients due to anthropogenic factors. Research attention has therefore been paid to finding ways to maximize endogenous LC-PUFA production, especially in production species, whereby deeper knowledge on molecular mechanisms of enzymatic steps involved is being generated. This review first briefly informs about the milestones in the history of LC-PUFA essentiality exploration before it focuses on the main aim-to highlight the fascinating Fads2 potential to play roles fundamental to adaptation to novel environmental conditions. Investigations are summarized to elucidate on the evolutionary history of fish Fads2, providing an explanation for the remarkable plasticity of this enzyme in fish. Furthermore, structural implications of Fads2 substrate specificity are discussed and some relevant studies performed on organisms other than fish are mentioned in cases when such studies have to date not been conducted on fish models. The importance of Fads2 in the context of growing aquaculture demand and dwindling LC-PUFA supply is depicted and a few remedies in the form of genetic engineering to improve endogenous production of these biomolecules are outlined.

Zobrazit více v PubMed

Tocher D.R., Betancor M.B., Sprague M., Olsen R.E., A Napier J. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients. 2019;11:89. doi: 10.3390/nu11010089. PubMed DOI PMC

Bell M.V., Tocher D.R. Lipids in Aquatic Ecosystems. Springer; New York, NY, USA: 2009. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: General pathways and new directions; pp. 211–236.

Tinoco J. Dietary requirements and functions of α-linolenic acid in animals. Prog. Lipid Res. 1982;21:1–45. doi: 10.1016/0163-7827(82)90015-7. PubMed DOI

Monroig Ó., Kabeya N. Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: A comprehensive review. Fish. Sci. 2018;84:911–928. doi: 10.1007/s12562-018-1254-x. DOI

Kabeya N., Fonseca M.M., Ferrier D.E.K., Navarro J.C., Bay L.K., Francis D.S., Tocher D.R., Castro L.F.C., Monroig O. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 2018;4:eaar6849. doi: 10.1126/sciadv.aar6849. PubMed DOI PMC

Jakobsson A., Westerberg R., Jacobsson A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid Res. 2006;45:237–249. doi: 10.1016/j.plipres.2006.01.004. PubMed DOI

Zárate R., El Jaber-Vazdekis N., Tejera N., Pérez J.A., Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017;6:25. doi: 10.1186/s40169-017-0153-6. PubMed DOI PMC

Spector A.A., Kim H.Y. Discovery of essential fatty acids. J. Lipid Res. 2015;56:11–21. doi: 10.1194/jlr.R055095. PubMed DOI PMC

Burr G.O., Burr M.M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J. Biol. Chem. 1929;82:345–367. doi: 10.1111/j.1753-4887.1973.tb06008.x. PubMed DOI

Burr G.O., Burr M.M. On the nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 1930;86:587–621.

Burr G.O., Burr M.M., Miller E.S. On the fatty acids essentiality in nutrition III. J. Biol. Chem. 1932;97:1–9.

Holman R.T., George O. Burr and the Discovery of Essential Fatty Acids. J. Nutr. 1988;118:535–540. doi: 10.1093/jn/118.5.535. PubMed DOI

Mead J. The essential fatty acids: Past, present and future. Prog. Lipid Res. 1981;20:1–6. doi: 10.1016/0163-7827(81)90007-2. PubMed DOI

Bergström S., Danielsson H., Klenberg D., Samuelsson B. The enzymatic conversion of essential fatty acids into prostaglandins. J. Biol. Chem. 1964;239:PC4006–PC4008. PubMed

Bergström S., Danielsson H., Samuelsson B. The enzymatic formation of prostaglandin E2 from arachidonic acid prostaglandins and related factors 32. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1964;90:207–210. doi: 10.1016/0304-4165(64)90145-X. PubMed DOI

Klenk E., Mohrhauer H. Metabolism of polyenoic acids in the rat. Hoppe Seylers Z. Physiol. Chem. 1960;320:218–232. doi: 10.1515/bchm2.1960.320.1.218. PubMed DOI

Dyerberg J., Bang H. Dietary fat and thrombosis. Lancet. 1978;311:152. doi: 10.1016/S0140-6736(78)90448-8. PubMed DOI

Dyerberg J., Bang H.O., Stoffersen E., Moncada J., Vane J.R. Eicosapentaenoic acid and the prevention of thrombosis and atherosclerosis? Lancet. 1978;2:117–119. doi: 10.1016/S0140-6736(78)91505-2. PubMed DOI

Simopoulos A.P. The omega-6/omega-3 fatty acid ratio: Health implications. Oléagineux, Corps gras. Lipides. 2010;17:267–275.

Simopoulos A.P. Importance of the omega-6/omega-3 balance in health and disease: Evolutionary aspects of diet. World Rev. Nutr. Diet. 2011;102:10–21. doi: 10.1159/000327785. PubMed DOI

Scaioli E., Liverani E., Belluzzi A. The Imbalance between n-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. Int. J. Mol. Sci. 2017;18:2619. doi: 10.3390/ijms18122619. PubMed DOI PMC

Gladyshev M.I., Sushchik N.N. Long-chain Omega-3 Polyunsaturated Fatty Acids in Natural Ecosystems and the Human Diet: Assumptions and Challenges. Biomolecules. 2019;9:485. doi: 10.3390/biom9090485. PubMed DOI PMC

Voss A., Reinhart M., Sankarappa S., Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Boil. Chem. 1991;266:19995–20000. PubMed

Sprecher H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta (BBA)—Mol. Cell Boil. Lipids. 2000;1486:219–231. doi: 10.1016/S1388-1981(00)00077-9. PubMed DOI

Monroig O., Li Y., Tocher D.R. Delta-8 desaturation activity varies among fatty acyl desaturases of teleost fish: High activity in delta-6 desaturases of marine species. Comp. Biochem. Physiol. Part. B Biochem. Mol. Boil. 2011;159:206–213. doi: 10.1016/j.cbpb.2011.04.007. PubMed DOI

Carmona-Antoñanzas G., Monroig O., Dick J.R., Davie A., Tocher D.R. Biosynthesis of very long-chain fatty acids (C > 24) in Atlantic salmon: Cloning, functional characterisation, and tissue distribution of an Elovl4 elongase. Comp. Biochem. Physiol. Part. B Biochem. Mol. Boil. 2011;159:122–129. doi: 10.1016/j.cbpb.2011.02.007. PubMed DOI

Trattner S. Ph.D. Thesis. Acta Universitatis Agriculturae Sueciae; Uppsala, Sweden: May, 2009. Quality of lipids in fish fed vegetable oils.

Vestergeren A.L.S. Ph.D. Thesis. Swedish University of Agricultural Sciences; Uppsala, Sweden: Dec, 2014. Transcriptional regulation in salmonids with emphasis on lipid metabolism.

Yin Y. Master´s Thesis. Norwegian University of Live Sciences; Ås, Norway: Sep, 2016. Expression of genes involved in regulation of polyunsaturated fatty acid metabolism in liver of Atlantic salmon (Salmo salar) undergoing parr-smolt transformation.

Ferdinandusse S., Denis S., Mooijer P.A., Zhang Z., Reddy J.K., Spector A.A., Wanders R.J. Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J. Lipid Res. 2001;42:1987–1995. PubMed

Sprecher H. A reevaluation of the pathway for the biosynthesis of 4,7,10,13,16,19-docosahexaenoic acid. Omega-3 News. 1992;7:1–3.

Li Y., Monroig O., Zhang L., Wang S., Zheng X., Dick J.R., You C., Tocher U.R. Vertebrate fatty acyl desaturase with Δ4 activity. Proc. Natl. Acad. Sci. USA. 2010;107:16840–16845. doi: 10.1073/pnas.1008429107. PubMed DOI PMC

Oboh A., Kabeya N., Carmona-Antoñanzas G., Castro L.F.C., Dick J.R., Tocher U.R., Monroig O. Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish. Sci. Rep. 2017;7:3889. doi: 10.1038/s41598-017-04288-2. PubMed DOI PMC

Guillou H., Zadravec D., Martin P.G., Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 2010;49:186–199. doi: 10.1016/j.plipres.2009.12.002. PubMed DOI

Tocher D.R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 2010;41:717–732. doi: 10.1111/j.1365-2109.2008.02150.x. DOI

Tocher D.R., Zheng X., Schlechtriem C., Hastings N., Dick J.R., Teale A.J. Highly unsaturated fatty acid synthesis in marine fish: Cloning, functional characterization, and nutritional regulation of fatty acyl Δ6 desaturase of Atlantic cod (Gadus morhua L.) Lipids. 2006;41:1003–1016. doi: 10.1007/s11745-006-5051-4. PubMed DOI

Zheng X., Seiliez I., Hastings N., Tocher D., Panserat S., Dickson C., Bergot P., Teale A. Characterization and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species. Comp. Biochem. Physiol. Part. B Biochem. Mol. Boil. 2004;139:269–279. doi: 10.1016/j.cbpc.2004.08.003. PubMed DOI

Zheng X., King Z., Xu Y., Monroig Ó., Morais S., Tocher D.R. Physiological roles of fatty acyl desaturases and elongases in marine fish: Characterization of cDNAs of fatty acyl Δ6-desaturase and Elovl5 elongase of cobia (Rachycentron canadum) Aquaculture. 2009;290:122–131. doi: 10.1016/j.aquaculture.2009.02.010. DOI

Leaver M.J., Bautista J.M., Björnsson B.T., Jönsson E., Krey G., Tocher D.R., Torstensen B.E. Towards Fish Lipid Nutrigenomics: Current State and Prospects for Fin-Fish Aquaculture. Rev. Fish. Sci. 2008;16:73–94. doi: 10.1080/10641260802325278. DOI

Gillard G., Harvey T.N., Gjuvsland A., Jin Y., Thomassen M., Lien S., Leaver M., Torgersen J.S., Hvidsten T.R., Vik J.O., et al. Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon. Mol. Ecol. 2018;27:1200–1213. doi: 10.1111/mec.14533. PubMed DOI

Ren H.-T., Zhang G.-Q., Li J.-L., Tang Y.-K., Li H.-X., Yu J.-H., Xu P. Two Δ6-desaturase-like genes in common carp (Cyprinus carpio var. Jian): Structure characterization, mRNA expression, temperature and nutritional regulation. Gene. 2013;525:11–17. doi: 10.1016/j.gene.2013.04.073. PubMed DOI

Lopes-Marques M., Kabeya N., Qian Y., Ruivo R., Santos M.M., Venkatesh B., Tocher D.R., Castro L.F.C., Monroig Ó. Retention of fatty acyl desaturase 1 (fads1) in Elopomorpha and Cyclostomata provides novel insights into the evolution of long-chain polyunsaturated fatty acid biosynthesis in vertebrates. BMC Evol. Boil. 2018;18:157 PubMed PMC

Wang S., Monroig Ó., Tang G., Zhang L., You C., Tocher D.R., Li Y. Investigating long-chain polyunsaturated fatty acid biosynthesis in teleost fish: Functional characterization of fatty acyl desaturase (Fads2) and Elovl5 elongase in the catadromous species, Japanese eel Anguilla japonica. Aquaculture. 2014;434:57–65.

Hastings N., Agaba M., Tocher U.R., Leaver M.J., Dick J.R., Sargent J.R., Teale A.J. A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Proc. Natl. Acad. Sci. USA. 2001;98:14304–14309. doi: 10.1073/pnas.251516598. PubMed DOI PMC

Castro L.F.C., Monroig Ó., Leaver M.J., Wilson J., Cunha I., Tocher U.R. Functional Desaturase Fads1 (Δ5) and Fads2 (Δ6) Orthologues Evolved before the Origin of Jawed Vertebrates. PLoS ONE. 2012;7:e31950. doi: 10.1371/journal.pone.0031950. PubMed DOI PMC

Kabeya N., Yoshizaki G., Tocher D.R., Monroig Ó. Investigación y Desarollo en Nutrición Acuícola. Universidad Autónoma de Nuevo León; San Nicolás de los Garza, Nuevo León, México: 2017. Diversification of Fads2 in Finfish Species: Implications for Aquaculture; pp. 338–362.

Zheng X., Tocher D.R., Dickson C.A., Bell J.G., Teale A.J. Highly unsaturated fatty acid synthesis in vertebrates: New insights with the cloning and characterization of a Δ6 desaturase of Atlantic salmon. Lipids. 2005;40:13–24. doi: 10.1007/s11745-005-1355-7. PubMed DOI

Seiliez I., Panserat S., Kaushik S., Bergot P. Cloning, tissue distribution and nutritional regulation of a Delta6-desaturaselike enzyme in rainbow trout. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001;130:83–93. doi: 10.1016/S1096-4959(01)00410-9. PubMed DOI

Cho H.P., Nakamura M.T., Clarke S.D. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 1999;274:471–477. doi: 10.1074/jbc.274.1.471. PubMed DOI

Guillou H., D’Andrea S., Rioux V., Barnouin R., Dalaine S., Pedrono F., Jan S., Legrand P. Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat Delta6-desaturase activity. J. Lipid Res. 2004;45:32–40. doi: 10.1194/jlr.M300339-JLR200. PubMed DOI

Mitchell A.G., Martin C.E. A novel cytochrome b5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae delta-9 fatty acid desaturase. J. Biol. Chem. 1995;270:29766–29772. PubMed

Dahmen J.L., Olsen R., Fahy D., Wallis G.J., Browse J. Cytochrome b5 coexpression increases Tetrahymena thermophila Δ6 fatty acid desaturase activity in Saccharomyces Cerevisiae. Eukaryot. Cell. 2013;12:923–931. doi: 10.1128/EC.00332-12. PubMed DOI PMC

Gostinčar C., Turk M., Gunde-Cimerman N. The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J. Membr. Biol. 2010;233:63–72. doi: 10.1007/s00232-010-9225-x. PubMed DOI

Wang H., Klein M.G., Zhou H., Lane W., Snell G., Levin I., Li K., Sang B.C. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat. Struct. Mol. Biol. 2015;22:581–585. doi: 10.1038/nsmb.3049. PubMed DOI

Bai Y., McCoy J.G., Levin E.J., Sobrado P., Rajashankar K.R., Fox B.G., Zhou M. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature. 2015;524:252–256. doi: 10.1038/nature14549. PubMed DOI PMC

Sayanova O., Beaudoin F., Libisch B., Castel A., Shewry P.R., Napier J.A. Mutagenesis and heterologous expression in yeast of a plant Delta6-fatty acid desaturase. J. Exp Bot. 2001;52:1581–1585. doi: 10.1093/jexbot/52.360.1581. PubMed DOI

Hashimoto K., Yoshizawa A.C., Okuda S., Kuma K., Goto S., Kanehisa M. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lipid Res. 2007;49:183–191. doi: 10.1194/jlr.M700377-JLR200. PubMed DOI

Watanabe K., Ohno M., Taguchi M., Kawamoto S., Ono K., Aki T. Identification of amino acid residues that determine the substrate specificity of mammalian membrane-bound front-end fatty acid desaturases. J. Lipid Res. 2016;57:89–99. doi: 10.1194/jlr.M064121. PubMed DOI PMC

Buček A., Matoušková P., Vogel H., Šebesta P., Jahn U., Weissflog J., Svatoš A., Pichová I. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase. Proc. Natl. Acad. Sci. USA. 2015;112:12586–12591. doi: 10.1073/pnas.1514566112. PubMed DOI PMC

Shi H., Wu R., Zheng Y., Yue X. Molecular mechanism underlying catalytic activity of delta 6 desaturase from Glossomastix chrysoplasta and Thalassiosira pseudonana. J. Lipid Res. 2018;56:2309–2321. doi: 10.1194/jlr.M079806. PubMed DOI PMC

Jin Y., Olsen R.E., Harvey T.N., Ostensen M.A., Li K., Santi N., Vadstein O., Vik J.O., Sandve S.R., Olsen Y. Comparative transcriptomics reveals domestication-associated features of Atlantic salmon lipid metabolism. [(accessed on 20 January 2020)];bioRxiv. 2019 doi: 10.1101/847848. Available online: https://www.biorxiv.org/content/10.1101/847848v1.full.pdf. PubMed DOI

Xie D., Fu Z., Wang S., You C., Monroig O., Tocher D.R., Li Y. Characteristics of the fads2 gene promoter in marine teleost Epinephelus coioides and role of Sp1-binding site in determining promoter activity. Sci. Rep. 2018;8:5305. doi: 10.1038/s41598-018-23668-w. PubMed DOI PMC

Geay F., Santigosa I.C.E., Corporeau C., Boudry P., Dreano Y., Corcos L., Bodin N., Vandeputte M., Zambonino-Infante J.L., Mazurais D., et al. Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax L.) fed a vegetable diet. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010;156:237–243. doi: 10.1016/j.cbpb.2010.03.008. PubMed DOI

Geay F., Zambonino-Infante J., Reinhardt R., Kuhl H., Santigosa E., Cahu C., Mazurais D. Characteristics of fads2 gene expression and putative promoter in European sea bass (Dicentrarchus labrax): Comparison with salmonid species and analysis of CpG methylation. Mar. Genomics. 2012;5:7–13. doi: 10.1016/j.margen.2011.08.003. PubMed DOI

Ishikawa A., Kabeya N., Ikeya K., Kakioka R., Cech J.N., Osada N., Leal M.C., Inoue J., Kume M., Toyoda A., et al. A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science. 2019;364:886–889. doi: 10.1126/science.aau5656. PubMed DOI

Tocher D.R. Issues surrounding fish as a source of omega-3 long-chain polyunsaturated fatty acids. Lipid Technol. 2009;21:13–16. doi: 10.1002/lite.200800079. DOI

Napier J.A., Usher S., Haslam R.P., Ruiz-Lopez N., Sayanova O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur. J. Lipid Sci Technol. 2015;117:1317–1324. doi: 10.1002/ejlt.201400452. PubMed DOI PMC

Maclean N., Laight R.J. Transgenic fish: An evaluation of benefits and risks. Fish Fish. 2001;1:146–172. doi: 10.1046/j.1467-2979.2000.00014.x. DOI

Yoshizaki G., Kiron V., Satoh S., Takeuchi T. Expression of masou salmon delta5-desaturase-like gene elevated EPA and DHA biosynthesis in zebrafish. Mar. Biotechnol. 2007;9:92–100. doi: 10.1007/s10126-006-6003-y. PubMed DOI

Gladyshev M.I., Sushchik N.N., Tolomeev A.P., Dgebuadze Y.Y. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev. Fish. Biol Fish. 2018;28:277–299. doi: 10.1007/s11160-017-9511-0. DOI

Cheng Q., Su B., Qin Z., Weng C.C., Yin F., Zhou Y., Fobes M., Perera D.A., Shang M., Soller F., et al. Interaction of diet and the masou salmon Δ5-desaturase transgene on Δ6-desaturase and stearoyl-CoA desaturase gene expression and N-3 fatty acid level in common carp (Cyprinus carpio) Transgenic Res. 2014;23:729–742. doi: 10.1007/s11248-014-9812-1. PubMed DOI

Bugg W. Master’s Thesis. Auburn University; Auburn, Alabama: May 7, 2017. The effects of the masou salmon delta5-desaturase transgene on N-3 fatty acid production in F1 transgenic common carp (Cyprinus carpio) and channel catfish (Ictalurus punctatus)

Zhang X., Pang S., Liu C., Wang H., Ye D., Zhu Z., Sun Y. A novel dietary source of EPA and DHA: Metabolic engineering of an important freshwater species—common carp by fat1-transgenesis. Mar. Biotechnol. 2019;21:171–185. doi: 10.1007/s10126-018-9868-7. PubMed DOI

Hendersen R.J., Tocher D.R. The lipid composition and biochemistry of freshwater fish. Prog Lipid Res. 1987;26:281–347. doi: 10.1016/0163-7827(87)90002-6. PubMed DOI

Zhu G., Jiang X., Ou Q., Zhang T., Wang M., Sun G., Wang Z., Sun J., Ge T. Enhanced Production of Docosahexaenoic Acid in Mammalian Cells. PLoS ONE. 2014;9:e96503. doi: 10.1371/journal.pone.0096503. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...