Changes in the Sterol Composition of the Plasma Membrane Affect Membrane Potential, Salt Tolerance and the Activity of Multidrug Resistance Pumps in Saccharomyces cerevisiae
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26418026
PubMed Central
PMC4587746
DOI
10.1371/journal.pone.0139306
PII: PONE-D-15-28879
Knihovny.cz E-zdroje
- MeSH
- ABC transportéry genetika metabolismus MeSH
- antifungální látky farmakologie MeSH
- biosyntetické dráhy genetika MeSH
- buněčná membrána chemie fyziologie MeSH
- ergosterol biosyntéza chemie MeSH
- flukonazol farmakologie MeSH
- fluorescenční mikroskopie MeSH
- koncentrace vodíkových iontů MeSH
- membránové potenciály fyziologie MeSH
- methyltransferasy genetika metabolismus MeSH
- mnohočetná fungální léková rezistence účinky léků genetika fyziologie MeSH
- molekulární struktura MeSH
- mutace MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae chemie genetika fyziologie MeSH
- tolerance k soli genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ABC transportéry MeSH
- antifungální látky MeSH
- delta 24-sterol methyltransferase MeSH Prohlížeč
- ergosterol MeSH
- flukonazol MeSH
- methyltransferasy MeSH
- PDR5 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- SNQ2 protein, S cerevisiae MeSH Prohlížeč
We investigated the impact of the deletions of genes from the final steps in the biosynthesis of ergosterol (ERG6, ERG2, ERG3, ERG5, ERG4) on the physiological function of the Saccharomyces cerevisiae plasma membrane by a combination of biological tests and the diS-C3(3) fluorescence assay. Most of the erg mutants were more sensitive than the wild type to salt stress or cationic drugs, their susceptibilities were proportional to the hyperpolarization of their plasma membranes. The different sterol composition of the plasma membrane played an important role in the short-term and long-term processes that accompanied the exposure of erg strains to a hyperosmotic stress (effect on cell size, pH homeostasis and survival of yeasts), as well as in the resistance of cells to antifungal drugs. The pleiotropic drug-sensitive phenotypes of erg strains were, to a large extent, a result of the reduced efficiency of the Pdr5 efflux pump, which was shown to be more sensitive to the sterol content of the plasma membrane than Snq2p. In summary, the erg4Δ and erg6Δ mutants exhibited the most compromised phenotypes. As Erg6p is not involved in the cholesterol biosynthetic pathway, it may become a target for a new generation of antifungal drugs.
Zobrazit více v PubMed
Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L. Ergosterol biosynthesis: a fungal pathway for life on land? Evolution. 2012;66: 2961–2968. PubMed
Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, et al. Altered sterol composition renders yeast thermotolerant. Science. 2014;346: 75–78. PubMed
Guan XL, Souza CM, Pichler H, Dewhurst G, Schaad O, Kajiwara K, et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol Biol Cell. 2009;20: 2083–2095. PubMed PMC
Spanova M, Zweytick D, Lohner K, Klug L, Leitner E, Hermetter A. Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae . Biochim Biophys Acta. 2012;1821: 647–653. PubMed PMC
Aguilar PS, Heiman MG, Walther TC, Engel A, Schwudke D, Gushwa N, et al. Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating. PNAS. 2010;107: 4170–4175. PubMed PMC
Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, Riezman H. Multiple functions of sterols in yeast endocytosis. Mol Biol Cell. 2002;13: 2664–2680. PubMed PMC
Jacquier N, Schneiter R. Mechanisms of sterol uptake and transport in yeast. J Steroid Biochem Mol Biol. 2012;129: 70–78. PubMed
Tiedje C, Holland DG, Just U, Höfken T. Proteins involved in sterol synthesis interact with Ste20 and regulate cell polarity. J Cell Sci. 2007;120: 3613–3624. PubMed
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res. 2014;14: 369–388. PubMed
Parks LW, Casey WM. Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol. 1995;49: 95–116. PubMed
Weete JD, Abril M, Blackwell M. Phylogenetic distribution of fungal sterols. PLoS ONE. 2010;5: e10899. PubMed PMC
Bard M, Sturm AM, Pierson CA, Brown S, Rogers KM, Nabinger S, et al. Sterol uptake in Candida glabrata: Rescue of sterol auxotrophic strains. Diagn Microbiol Infect Dis. 2005;52: 285–293. PubMed
Hazen KC, Stei J, Darracott C, Breathnach A, May J, Howell SA. Isolation of cholesterol-dependent Candida glabrata from clinical specimens. Diagn Microbiol Infect Dis. 2005;52: 35–37. PubMed
Xiong Q, Hassan SA, Wilson WK, Han XY, May GS, Tarrand JJ, et al. Cholesterol import by Aspergillus fumigatus and its influence on antifungal potency of sterol biosynthesis inhibitors. Antimicrob Agents Chemother. 2005;49: 518–524. PubMed PMC
Wiseman H. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett 1993;326:285–8. PubMed
Daum G, Lees ND, Bard M, Dickson R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae . Yeast. 1998;14: 1471–1510. PubMed
Lees ND, Skaggs B, Kirsch DR, Bard M. Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae–A review. Lipids. 1995;30: 221–226. PubMed
Malínský J, Opekarová M, Tanner W. The lateral compartmentation of the yeast plasma membrane. Yeast. 2010;27: 473–478. PubMed
Merzendorfer H, Heinisch JJ. Microcompartments within the yeast plasma membrane. Biol Chem. 2013;394: 189–202. PubMed
Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front Oncol. 2012;2: 140. PubMed PMC
Spira F, Mueller NS, Beck G, von Olshausen P, Beig J, Wedlich-Söldner R. Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol. 2012;14: 640–648. PubMed
Marty A, Finkelstein A. Pores formed in lipid bilayer membranes by nystatin. J Gen Physiol. 1975;65: 515–526. PubMed PMC
Fromtling RA. Overview of medically important antifungal azole derivatives. Clin Microbiol Rev. 1988;1: 187–217. PubMed PMC
Shalini K, Kumar N, Drabu S, Sharma PK. Advances in synthetic approach to and antifungal activity of triazoles. Beilstein J Org Chem. 2011;7: 668–677. PubMed PMC
Marešová L, Hošková B, Urbánková E, Chaloupka R, Sychrová H. New applications of pHluorin-measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast. 2010;27: 317–325. PubMed
Miesenböck G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998;394: 192–195. PubMed
Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24: 2519–2524. PubMed PMC
Hill JE, Myers AM, Koerner TJ, Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986;2: 163–167. PubMed
Myers AM, Tzagoloff A, Kinney DM, Lusty CJ. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene. 1986;45: 299–310. PubMed
Kinclová O, Ramos J, Potier S, Sychrová H. Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol. 2001;40: 656–668. PubMed
Hendrych T, Kodedová M, Sigler K, Gášková D. Characterization of the kinetics and mechanisms of inhibition of drugs interacting with the S. cerevisiae multidrug resistance pumps Pdr5p and Snq2p. Biochim Biophys Acta. 2009;1788: 717–723. PubMed
Denksteinová B, Gášková D, Heřman P, Večeř J, Malínský J, Plášek J, et al. Monitoring of membrane potential changes in S. cerevisiae by diS-C3(3) fluorescence. Folia Microbiol. 1997;42: 221–224. PubMed
Gášková D, Brodská B, Heřman P, Večeř J, Malínský J, Sigler K, et al. Fluorescent probing of membrane potential in walled cells: diS-C3(3) assay in Saccharomyces cerevisiae . Yeast. 1998;14: 1189–1197. PubMed
Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology. 2009;155: 268–278. PubMed
Heřman P, Večeř J, Opekarová M, Veselá P, Jančíková I, Zahumenský J, et al. Depolarization affects the lateral microdomain structure of yeast plasma membrane. FEBS Journal. 2015;282: 419–434. PubMed
Herrera R, Álvarez MC, Gelis S, Kodedová M, Sychrová H, Kschischo M, et al. Role of Saccharomyces cerevisiae Trk1 in stabilization of intracellular potassium content upon changes in external potassium levels. Biochim Biophys Acta. 2014;1838: 127–133. PubMed
Čadek R, Chládková K, Sigler K, Gášková D. Impact of the growth phase on the activity of multidrug resistance pumps and membrane potential of S. cerevisiae: effect of pump overproduction and carbon source. Biochim Biophys Acta. 2004;1665: 111–117. PubMed
Ren B, Dai HQ, Pei G, Tong YJ, Zhuo Y, Yang N, et al. ABC transporters coupled with the elevated ergosterol contents contribute to the azole resistance and amphotericin B susceptibility. Appl Microbiol Biotechnol. 2014;98: 2609–2616. PubMed
Ariño J, Ramos J, Sychrová H. Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev. 2010;74: 95–120. PubMed PMC
Welihinda AA, Beavis AD, Trumbly RJ. Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae . Biochim Biophys Acta. 1994;1193: 107–117. PubMed
Barreto L, Canadell D, Petrezsélyová S, Navarrete C, Marešová L, Peréz-Valle J, et al. A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae . Eukaryot Cell. 2011;10: 1241–1250. PubMed PMC
Szopinska A, Degand H, Hochstenbach J-F, Nader J, Morsomme P. Rapid response of the yeast plasma membrane proteome to salt stress. Mol Cell Proteomics. 2011;10: M111.009589. PubMed PMC
Käufer NF, Fried HM, Schwindinger WF, Jasin M, Warner JR. Cycloheximide resistance in yeast: the gene and its protein. Nucleic Acids Res. 1983;11: 3123–3135. PubMed PMC
Kodedová M, Sigler K, Lemire BD, Gášková D. Fluorescence method for determining the mechanism and speed of action of surface-active drugs on yeast cells. BioTechniques. 2011;50: 58–63. PubMed
Anderson JB, Sirjusingh C, Parsons AB, Boone C, Wickens C, Cowen LE, et al. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae . Genetics. 2003;163: 1287–1298. PubMed PMC
Kralli A, Yamamoto KR. An FK506-sensitive transporter selectively decreases intracellular levels and potency of steroid hormones. J Biol Chem. 1996;271: 17152–17156. PubMed
Decottignies A, Lambert L, Catty P, Degand H, Epping EA, Moye-Rowley WS, et al. Identification and characterization of SNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane. J Biol Chem. 1995;270: 18150–18157. PubMed
Emter R, Heese-Peck A, Kralli A. ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Letters. 2002;521: 57–61. PubMed
Kaur R, Bachhawat AK. The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae . Microbiology. 1999;145: 809–818. PubMed
Prasad R, Singh A. Lipids of Candida albicans and their role in multidrug resistance. Curr Genet. 2013;59: 243–250. PubMed
Jensen-Pergakes KL, Kennedy MA, Lees ND, Barbuch R, Koegel C, Bard M. Sequencing, disruption, and characterization of the Candida albicans sterol methyltransferase (ERG6) gene: drug susceptibility studies in erg6 mutants. Antimicrob Agents Chemother. 1998;42: 1160–1167. PubMed PMC
Parks LW, Smith SJ, Crowley JH. Biochemical and physiological effects of sterol alterations in yeast–A review. Lipids. 1995;30: 227–230. PubMed
Chung S-K, Lee K-W, Kang HI, Yamashita C, Kudo M, Yoshida Y. Design and synthesis of potential inhibitors of the ergosterol biosynthesis as antifungal agents. Bioorg Med Chem. 2000;8: 2475–2486. PubMed
Kristan K, Lanišnik Rižner T. Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol. 2012;129: 79–91. PubMed
Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis. 2012;73: 45–48. PubMed
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20: 133–163. PubMed PMC
Potassium Uptake Mediated by Trk1 Is Crucial for Candida glabrata Growth and Fitness