• This record comes from PubMed

Hormonal Regulation of Response to Oxidative Stress in Insects-An Update

. 2015 Oct 27 ; 16 (10) : 25788-816. [epub] 20151027

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH's role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers-disturbed by the stressors-after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3',5'-monophosphate pathways in the presence of extra and intra-cellular Ca(2+) stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed.

See more in PubMed

Fridovich I. Mitochondria: Are they the seat of senescence? Aging Cell. 2004;3:13–16. doi: 10.1046/j.1474-9728.2003.00075.x. PubMed DOI

Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. 3rd ed. Oxford University Press; New York, NY, USA: 1999.

Dupuy C., Virion A., Ohayon R. Mechanism of hydrogen peroxide formation catalyzed by NADPH oxidase in thyroid plasma membrane. J. Biol. Chem. 1991;266:3739–3743. PubMed

Granger D.N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. 1988;255:H1269–H1275. doi: 10.1016/0883-9441(89)90011-7. PubMed DOI

Fenton H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894;65:899–910. doi: 10.1039/ct8946500899. DOI

Haber F., Weiss J.J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1934;147:332–351. doi: 10.1098/rspa.1934.0221. DOI

Liochev S.I., Fridovich I. The Haber-Weiss cycle—70 years later: An alternative view. Redox Rep. 2002;7:55–57. doi: 10.1179/135100002125000190. PubMed DOI

Biaglow J.E., Mitchell J.B., Held K. The importance of peroxide and superoxide in the X-ray response. Int. J. Radiat. Oncol. Biol. Phys. 1992;22:665–669. doi: 10.1016/0360-3016(92)90499-8. PubMed DOI

Chiu S.M., Xue L.Y., Friedman L.R., Oleinick N.L. Copper ion-mediated sensitization of nuclear matrix attachment sites to ionizing radiation. Biochemistry. 1993;32:6214–6219. doi: 10.1021/bi00075a014. PubMed DOI

Hiltermann J.T., Lapperre T.S., van Bree L., Steerenberg P.A., Brahim J.J., Sont J.K., Sterk P.J., Hiemstra P.S., Stolk J. Ozone-induced inflammation assessed in sputum and bronchial lavage fluid from asthmatics. Free Radic. Biol. Med. 1999;27:1448–1454. doi: 10.1016/S0891-5849(99)00191-4. PubMed DOI

Bagchi D., Bagchi M., Hassoun E.A., Stohs S.J. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995;104:129–140. doi: 10.1016/0300-483X(95)03156-A. PubMed DOI

Melchiorri D., Ortiz G.G., Reiter R.J., Sewerynek E., Daniels W.M., Pablos M.I., Nisticò G. Melatonin reduces paraquat-induced genotoxicity in mice. Toxicol. Lett. 1998;95:103–108. doi: 10.1016/S0378-4274(98)00025-3. PubMed DOI

Ledirac N., Antherieu S., d’Uby A.D., Caron J.-C., Rahmani R. Effects of organochlorine insecticides on MAP kinase pathways in human HaCaT keratinocytes: key role of reactive oxygen species. Toxicol. Sci. 2005;86:444–452. doi: 10.1093/toxsci/kfi192. PubMed DOI

Ahmad S. Oxidative stress from environmental pollutants. Arch. Insect Biochem. Physiol. 1995;29:135–157. doi: 10.1002/arch.940290205. PubMed DOI

Bi J.L., Felton G.W. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 1995;21:1511–1530. doi: 10.1007/BF02035149. PubMed DOI

Souza A.V.G., Petretski J.H., Demasi M., Bechara E.J.H., Oliveira P.L. Urate protects a blood-sucking insect against hemin-induced oxidative stress. Free Radic. Biol. Med. 1997;22:209–214. doi: 10.1016/S0891-5849(96)00293-6. PubMed DOI

Lalouette L., Williams C.M., Hervant F., Sinclair B.J., Renault D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. 2011;158:229–234. doi: 10.1016/j.cbpa.2010.11.007. PubMed DOI

Meng J.-Y., Zhang C.-Y., Zhu F., Wang X.-P., Lei C.-L. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. J. Insect Physiol. 2009;55:588–592. doi: 10.1016/j.jinsphys.2009.03.003. PubMed DOI

Felton G.W., Summers C.B. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 1995;29:187–197. doi: 10.1002/arch.940290208. PubMed DOI

Perić-Mataruga V., Nenadović V., Ivanović J. Neurohormones in insect stress: A review. Arch. Biol. Sci. 2006;58:1–12. doi: 10.2298/ABS0601006P. DOI

Krishnan N., Kodrík D. Endocrine control of oxidative stress in insects. In: Farooqui T., Farooqui A.A., editors. Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling. Wiley-Blackwell; New Jersey, NJ, USA: 2012. pp. 261–270.

Gilbert L.I., Yatrou K., Gill S.S. Comprehensive Molecular Insect Science. Volume 3. Elsevier; Oxford, UK: 2005. p. 842.

Nijhout H.F. Insect Hormones. Princeton University Press; Princeton, NJ, USA: 1998.

Gäde G., Hoffmann K.H., Spring J.H. Hormonal regulation in insects: Facts, gaps, and future directions. Physiol. Rev. 1997;77:963–1032. PubMed

Gäde G., Auerswald L. Mode of action of neuropeptides from the adipokinetic hormone family. Gen. Comp. Endocrinol. 2003;132:10–20. doi: 10.1016/S0016-6480(03)00159-X. PubMed DOI

Kodrík D. Adipokinetic hormone functions that are not associated with insect flight. Physiol. Entomol. 2008;33:171–180. doi: 10.1111/j.1365-3032.2008.00625.x. DOI

Scarborough R.M., Jamieson G.C., Kalish F., Kramer S.J., McEnroe G.A., Miller C.A., Schooley D.A. Isolation and primary structure of two peptides with cardioacceleratory and hyperglycemic activity from the corpora cardiaca of Periplaneta americana. Proc. Natl. Acad. Sci. USA. 1984;81:5575–5579. doi: 10.1073/pnas.81.17.5575. PubMed DOI PMC

Kodrík D., Socha R., Šimek P., Zemek R., Goldsworthy G.J. A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera) Insect Biochem. Mol. Biol. 2000;30:489–498. doi: 10.1016/S0965-1748(00)00025-4. PubMed DOI

Goldsworthy G., Opoku-Ware K., Mullen L. Adipokinetic hormone enhances laminarin and bacterial lipopolysaccharide-induced activation of the prophenoloxidase cascade in the African migratory locust, Locusta migratoria. J. Insect Physiol. 2002;48:601–608. doi: 10.1016/S0022-1910(02)00085-9. PubMed DOI

Lee G., Park J.H. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics. 2004;167:311–323. doi: 10.1534/genetics.167.1.311. PubMed DOI PMC

Kodrík D., Krishnan N., Habuštová O. Is the titer of adipokinetic peptides in Leptinotarsa decemlineata fed on genetically modified potatoes increased by oxidative stress? Peptides. 2007;28:974–980. doi: 10.1016/j.peptides.2007.01.017. PubMed DOI

Kodrík D., Vinokurov K., Tomčala A., Socha R. The effect of adipokinetic hormone on midgut characteristics in Pyrrhocoris apterus L. (Heteroptera) J. Insect Physiol. 2012;58:194–204. doi: 10.1016/j.jinsphys.2011.11.010. PubMed DOI

Vinokurov K., Bednářová A., Tomčala A., Stašková T., Krishnan N., Kodrík D. Role of adipokinetic hormone in stimulation of salivary gland activities: The fire bug Pyrrhocoris apterus L. (Heteroptera) as a model species. J. Insect Physiol. 2014;60:58–67. doi: 10.1016/j.jinsphys.2013.11.005. PubMed DOI

Bil M., Broeckx V., Landuyt B., Huybrechts R. Differential peptidomics highlights adipokinetic hormone as key player in regulating digestion in anautogenous flesh fly, Sarcophaga crassipalpis. Gen. Comp. Endocrinol. 2014;208:49–56. doi: 10.1016/j.ygcen.2014.08.016. PubMed DOI

Večeřa J., Krishnan N., Alquicer G., Kodrík D., Socha R. Adipokinetic hormone-induced enhancement of antioxidant capacity of Pyrrhocoris apterus hemolymph in response to oxidative stress. Comp. Biochem. Physiol. C. 2007;146:336–342. doi: 10.1016/j.cbpc.2007.04.005. PubMed DOI

Bednářová A., Krishnan N., Cheng I.-C., Večeřa J., Lee H.-J., Kodrík D. Adipokinetic hormone counteracts oxidative stress elicited in insects by hydrogen peroxide: in vivo and in vitro study. Physiol. Entomol. 2013;38:54–62. doi: 10.1111/phen.12008. DOI

Velki M., Kodrík D., Večeřa J., Hackenberger B.K., Socha R. Oxidative stress elicited by insecticides: A role for the adipokinetic hormone. Gen. Comp. Endocrinol. 2011;172:77–84. doi: 10.1016/j.ygcen.2010.12.009. PubMed DOI

Plavšin I., Stašková T., Šerý M., Smýkal V., Hackenberger B.K., Kodrík D. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: Oxidative stress and metabolic aspects. Comp. Biochem. Physiol. C. 2015;170:19–27. doi: 10.1016/j.cbpc.2015.01.005. PubMed DOI

Kodrík D., Socha R., Syrová Z. Developmental and diel changes of adipokinetic hormone in CNS and haemolymph of the flightless wing-polymorphic bug, Pyrrhocoris apterus (L.) J. Insect Physiol. 2003;49:53–61. doi: 10.1016/S0022-1910(02)00245-7. PubMed DOI

Diederen J.H.B., Oudejans R.C.H.M., Harthoorn L.F., van der Horst D.J. Cell biology of the adipokinetic hormone-producing neurosecretory cells in the locust corpus cardiacum. Microsc. Res. Tech. 2002;56:227–236. doi: 10.1002/jemt.10026. PubMed DOI

Scott M., Lubin B., Zuo L., Zuo L., Kuypers F. Erythrocyte defense against hydrogen peroxide: preeminent importance of catalase. J. Lab. Clin. Med. 1991;118:7–16. PubMed

Mendis E., Rajapakse N., Kim S.-K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 2005;53:581–587. doi: 10.1021/jf048877v. PubMed DOI

Burlakova E.B., Zhizhina G.P., Gurevich S.M., Fatkullina L.D., Kozachenko A.I., Nagler L.G., Zavarykina T.M., Kashcheev V.V. Biomarkers of oxidative stress and smoking in cancer patients. J. Cancer Res. Ther. 2010;6:47–53. PubMed

Večeřa J., Krishnan N., Mithöfer A., Vogel H., Kodrík D. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis. Comp. Biochem. Physiol. C. 2012;155:389–395. doi: 10.1016/j.cbpc.2011.10.009. PubMed DOI

Whiteside C., Hassan H.M. Induction and inactivation of catalase and superoxide dismutase of Escherichia coli by ozone. Arch. Biochem. Biophys. 1987;257:464–471. doi: 10.1016/0003-9861(87)90591-1. PubMed DOI

Farr S.B., Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Mol. Biol. Rev. 1991;55:561–585. PubMed PMC

Mannervik B., Danielson U.H., Ketterer B. Glutathione transferases—Structure and catalytic activity. CRC Crit. Rev. Biochem. 1988;23:283–337. doi: 10.3109/10409238809088226. PubMed DOI

Sawicki R., Singh S.P., Mondal A.K., Benes H., Zimniak P. Cloning, expression and biochemical characterization of one ɛ-class (GST-3) and ten Δ-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochem. J. 2003;370:661–669. doi: 10.1042/bj20021287. PubMed DOI PMC

Ploemen J.H.T.M., van Ommen B., de Haan A., Schefferlie J.G., van Bladeren P.J. In vitro and in vivo reversible and irreversible inhibition of rat glutathione S-transferase isoenzymes by caffeic acid and its 2-S-glutathionyl conjugate. Food Chem. Toxicol. 1993;31:475–482. doi: 10.1016/0278-6915(93)90106-9. PubMed DOI

Kosower N.S., Kosower E.M. The glutathione status of cells. Int. Rev. Cytol. 1978;54:109–160. PubMed

Lomaestro B.M., Malone M. Glutathione in health and disease: Pharmacotherapeutic issues. Ann. Pharmacother. 1995;29:1263–1273. PubMed

Chevion M., Berenshtein E., Stadtman E.R. Human studies related to protein oxidation: Protein carbonyl content as a marker of damage. Free Radic. Res. 2000;33:S99–S108. PubMed

Kodrík D., Bártů I., Socha R. Adipokinetic hormone (Pyrap-AKH) enhances the effect of a pyrethroid insecticide against the firebug Pyrrhocoris apterus. Pest. Manag. Sci. 2010;66:425–431. doi: 10.1002/ps.1894. PubMed DOI

Kodrík D., Stašková T., Jedličková V., Weyda F., Závodská R., Pflegerová J. Molecular characterization, tissue distribution, and ultrastructural localization of adipokinetic hormones in the CNS of the firebug Pyrrhocoris apterus (Heteroptera, Insecta) Gen. Comp. Endocrinol. 2015;210:1–11. doi: 10.1016/j.ygcen.2014.10.014. PubMed DOI

Janero D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 1990;9:515–540. doi: 10.1016/0891-5849(90)90131-2. PubMed DOI

Slocinska M., Antos-Krzeminska N., Rosinski G., Jarmuszkiewicz W. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana. J. Bioenerg. Biomembr. 2011;43:717–727. doi: 10.1007/s10863-011-9385-0. PubMed DOI

Slocinska M., Antos-Krzeminska N., Golebiowski M., Kuczer M., Stepnowski P., Rosinski G., Jarmuszkiewicz W. UCP4 expression changes in larval and pupal fat bodies of the beetle Zophobas atratus under adipokinetic hormone treatment. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013;166:52–59. doi: 10.1016/j.cbpa.2013.05.009. PubMed DOI

Sluse F.E., Jarmuszkiewicz W., Navet R., Douette P., Mathy G., Sluse-Goffart C.M. Mitochondrial UCPs: New insights into regulation and impact. Biochim. Biophys. Acta. 2006;1757:480–485. doi: 10.1016/j.bbabio.2006.02.004. PubMed DOI

Sánchez-Blanco A., Fridell Y.-W.C., Helfand S.L. Involvement of Drosophila uncoupling protein 5 in metabolism and aging. Genetics. 2006;172:1699–1710. doi: 10.1534/genetics.105.053389. PubMed DOI PMC

Gáliková M., Diesner M., Klepsatel P., Hehlert P., Xu Y., Bickmeyer I., Predel R., Kühnlein R.P. Energy homeostasis control in Drosophila adipokinetic hormone mutants. Genetics. 2015;201 doi: 10.1534/genetics.115.178897. PubMed DOI PMC

Singh G.J.P., Orchard I. Is insecticide-induced release of insect neurohormones a secondary effect of hyperactivity of the central nervous system? Pestic. Biochem. Physiol. 1982;17:232–242. doi: 10.1016/0048-3575(82)90134-1. DOI

Candy D.J. Adipokinetic hormones concentrations in the haemolymph of Schistocerca gregaria, measured by radioimmunoassay. Insect Biochem. Mol. Biol. 2002;32:1361–1367. doi: 10.1016/S0965-1748(02)00056-5. PubMed DOI

Kodrík D., Socha R. The effect of insecticide on adipokinetic hormone titre in the insect body. Pest. Manag. Sci. 2005;61:1077–1082. doi: 10.1002/ps.1087. PubMed DOI

Che-Mendoza A., Penilla R., Rodríguez D. Insecticide resistance and glutathione S-transferases in mosquitoes: A review. Afr. J. Biotechnol. 2009;8:1386–1397.

Vontas J.G., Small G.J., Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem. J. 2001;357:65–72. doi: 10.1042/bj3570065. PubMed DOI PMC

Fragoso D.B., Guedes R.N.C., Rezende S.T. Glutathione S-transferase detoxification as a potential pyrethroid resistance mechanism in the maize weevil, Sitophilus zeamais. Entomol. Exp. Appl. 2003;109:21–29. doi: 10.1046/j.1570-7458.2003.00085.x. DOI

Kostaropoulos I., Papadopoulos A.I., Metaxakis A., Boukouvala E., Papadopoulou-Mourkidou E. Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem. Mol. Biol. 2001;31:313–319. doi: 10.1016/S0965-1748(00)00123-5. PubMed DOI

Staubli F., Jorgensen T.J.D., Cazzamali G., Williamson M., Lenz C., Sondergaard L., Roepstorff P., Grimmelikhuijzen C.J.P. Molecular identification of the insect adipokinetic hormone receptors. Proc. Natl. Acad. Sci. USA. 2002;99:3446–3451. doi: 10.1073/pnas.052556499. PubMed DOI PMC

Caers J., Verlinden H., Zels S., Vandersmissen H.P., Vuerinckx K., Schoofs L. More than two decades of research on insect neuropeptide GPCRs: An overview. Front. Endocrinol. 2012;3:151. doi: 10.3389/fendo.2012.00151. PubMed DOI PMC

Park Y., Kim Y.-J., Adams M.E. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc. Natl. Acad. Sci. USA. 2002;99:11423–11428. doi: 10.1073/pnas.162276199. PubMed DOI PMC

Zhu C., Huang H., Hua R., Li G., Yang D., Luo J., Zhang C., Shi L., Benovic J.L., Zhou N. Molecular and functional characterization of adipokinetic hormone receptor and its peptide ligands in Bombyx mori. FEBS Lett. 2009;583:1463–1468. doi: 10.1016/j.febslet.2009.03.060. PubMed DOI PMC

Hansen K.K., Hauser F., Cazzamali G., Williamson M., Grimmelikhuijzen C.J.P. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana. Biochem. Biophys. Res. Commun. 2006;343:638–643. doi: 10.1016/j.bbrc.2006.03.012. PubMed DOI

Kaufmann C., Brown M.R. Adipokinetic hormones in the African malaria mosquito, Anopheles gambiae: Identification and expression of genes for two peptides and a putative receptor. Insect Biochem. Mol. Biol. 2006;36:466–481. doi: 10.1016/j.ibmb.2006.03.009. PubMed DOI

Wicher D., Agricola H.-J., Söhler S., Gundel M., Heinemann S.H., Wollweber L., Stengl M., Derst C. Differential receptor activation by cockroach adipokinetic hormones produces differential effects on ion currents, neuronal activity, and locomotion. J. Neurophysiol. 2006;95:2314–2325. doi: 10.1152/jn.01007.2005. PubMed DOI

Kaufmann C., Merzendorfer H., Gäde G. The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti. Insect Biochem. Mol. Biol. 2009;39:770–781. doi: 10.1016/j.ibmb.2009.09.002. PubMed DOI

Ziegler R., Isoe J., Moore W., Riehle M.A., Wells M.A. The putative AKH receptor of the tobacco hornworm, Manduca sexta, and its expression. J. Insect Sci. 2011;11:40. doi: 10.1673/031.011.0140. PubMed DOI PMC

Spencer I.M., Candy D.J. Hormonal control of diacyl glycerol mobilization from fat body of the desert locust, Schistocerca gregaria. Insect Biochem. 1976;6:289–296. doi: 10.1016/0020-1790(76)90096-2. DOI

Vroemen S.F., van Marrewijk W.J.A., de Meijer J., van den Broek A.T., van der Horst D.J. Differential induction of inositol phosphate metabolism by three adipokinetic hormones. Mol. Cell. Endocrinol. 1997;130:131–139. doi: 10.1016/S0303-7207(97)00083-X. PubMed DOI

Van der Horst D.J., van Marrewijk W.J.A., Diederen J.H. Adipokinetic hormones of insect: Release, signal transduction, and responses. Int. Rev. Cytol. 2001;211:179–240. PubMed

Bednářová A., Kodrík D., Krishnan N. Adipokinetic hormone exerts its anti-oxidative effects using a conserved signal-transduction mechanism involving both PKC and cAMP by mobilizing extra- and intracellular Ca2+ stores. Comp. Biochem. Physiol. C. 2013;158:142–149. doi: 10.1016/j.cbpc.2013.07.002. PubMed DOI

Bednářová A., Kodrík D., Krishnan N. Knockdown of adipokinetic hormone synthesis increases susceptibility to oxidative stress in Drosophila—A role for dFoxO? Comp. Biochem. Physiol. C. 2015;171:8–14. doi: 10.1016/j.cbpc.2015.03.006. PubMed DOI

Zheng X., Yang Z., Yue Z., Alvarez J.D., Sehgal A. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc. Natl. Acad. Sci. USA. 2007;104:15899–15904. PubMed PMC

Süren-Castillo S., Abrisqueta M., Maestro J.L. FoxO is required for the activation of hypertrehalosemic hormone expression in cockroaches. Biochim. Biophys. Acta. 2014;1840:86–94. doi: 10.1016/j.bbagen.2013.08.015. PubMed DOI

Hay N. Interplay between FOXO, TOR, and Akt. Biochim. Biophys. Acta. 2011;1813:1965–1970. doi: 10.1016/j.bbamcr.2011.03.013. PubMed DOI PMC

Lee J.H., Budanov A.V., Park E.J., Birse R., Kim T.E., Perkins G.A., Ocorr K., Ellisman M.H., Bodmer R., Bier E., Karin M. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science. 2010;327:1223–1228. doi: 10.1126/science.1182228. PubMed DOI PMC

Peeters H., Debeer P., Bairoch A., Wilquet V., Huysmans C., Parthoens E., Fryns J.P., Gewillig M., Nakamura Y., Niikawa N., et al. PA26 is a candidate gene for heterotaxia in humans: Identification of a novel PA26-related gene family in human and mouse. Hum. Genet. 2003;112:573–580. PubMed

Budanov A.V, Sablina A.A., Feinstein E., Koonin E.V, Chumakov P.M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004;304:596–600. doi: 10.1126/science.1095569. PubMed DOI

Budanov A.V, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134:451–460. doi: 10.1016/j.cell.2008.06.028. PubMed DOI PMC

Eijkelenboom A., Burgering B.M.T. FOXOs: Signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 2013;14:83–97. doi: 10.1038/nrm3507. PubMed DOI

Jünger M.A., Rintelen F., Stocker H., Wasserman J.D., Végh M., Radimerski T., Greenberg M.E., Hafen E. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2003;2:20. doi: 10.1186/1475-4924-2-20. PubMed DOI PMC

Mattila J., Bremer A., Ahonen L., Kostiainen R., Puig O. Drosophila FoxO regulates organism size and stress resistance through an adenylate cyclase. Mol. Cell. Biol. 2009;29:5357–5365. doi: 10.1128/MCB.00302-09. PubMed DOI PMC

Tong J.J., Schriner S.E., McCleary D., Day B.J., Wallace D.C. Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nat. Genet. 2007;39:476–485. doi: 10.1038/ng2004. PubMed DOI

Wang B., Goode J., Best J., Meltzer J., Schilman P.E., Chen J., Garza D., Thomas J.B., Montminy M. The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila. Cell Metab. 2008;7:434–444. doi: 10.1016/j.cmet.2008.02.010. PubMed DOI PMC

Essers M.A.G., Weijzen S., de Vries-Smits A.M.M., Saarloos I., de Ruiter N.D., Bos J.L., Burgering B.M.T. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 2004;23:4802–4812. doi: 10.1038/sj.emboj.7600476. PubMed DOI PMC

Wang M.C., Bohmann D., Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell. 2005;121:115–125. doi: 10.1016/j.cell.2005.02.030. PubMed DOI

Kawamori D., Kaneto H., Nakatani Y., Matsuoka T.-A., Matsuhisa M., Hori M., Yamasaki Y. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 2006;281:1091–1098. doi: 10.1074/jbc.M508510200. PubMed DOI

Kops G.J., de Ruiter N.D., de Vries-Smits A.M., Powell D.R., Bos J.L., Burgering B.M. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature. 1999;398:630–634. PubMed

Biggs W.H., Meisenhelder J., Hunter T., Cavenee W.K., Arden K.C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA. 1999;96:7421–7426. doi: 10.1073/pnas.96.13.7421. PubMed DOI PMC

Glauser D.A., Schlegel W. The emerging role of FOXO transcription factors in pancreatic β cells. J. Endocrinol. 2007;193:195–207. doi: 10.1677/JOE-06-0191. PubMed DOI

Buch S., Melcher C., Bauer M., Katzenberger J., Pankratz M.J. Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab. 2008;7:321–332. doi: 10.1016/j.cmet.2008.02.012. PubMed DOI

Zhao H.W., Haddad G.G. Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster. Placenta. 2011;32:S104–S108. doi: 10.1016/j.placenta.2010.11.017. PubMed DOI PMC

Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–2195. doi: 10.1126/science.287.5461.2185. PubMed DOI

Noyes B.E., Katz F.N., Schaffer M.H. Identification and expression of the Drosophila adipokinetic hormone gene. Mol. Cell. Endocrinol. 1995;109:133–141. doi: 10.1016/0303-7207(95)03492-P. PubMed DOI

Schaffer M.H., Noyes B.E., Slaughter C.A., Thorne G.C., Gaskell S.J. The fruitfly Drosophila melanogaster contains a novel charged adipokinetic-hormone-family peptide. Biochem. J. 1990;269:315–320. doi: 10.1042/bj2690315. PubMed DOI PMC

Grönke S., Müller G., Hirsch J., Fellert S., Andreou A., Haase T., Jäckle H., Kühnlein R.P. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol. 2007;5:e137. doi: 10.1371/journal.pbio.0050137. PubMed DOI PMC

Bharucha K.N., Tarr P., Zipursky S.L. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J. Exp. Biol. 2008;211:3103–3110. doi: 10.1242/jeb.016451. PubMed DOI PMC

Baumbach J., Xu Y., Hehlert P., Kühnlein R.P. Gαq, Gγ1 and Plc21C control Drosophila body fat storage. J. Genet. Genom. 2014;41:283–292. doi: 10.1016/j.jgg.2014.03.005. PubMed DOI

Kim S.K., Rulifson E.J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature. 2004;431:316–320. doi: 10.1038/nature02897. PubMed DOI

Isabel G., Martin J.-R., Chidami S., Veenstra J.A., Rosay P. AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005;288:R531–R538. PubMed

Waterson M.J., Chung B.Y., Harvanek Z.M., Ostojic I., Alcedo J., Pletcher S.D. Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling. Proc. Natl. Acad. Sci. USA. 2014;111:8137–8142. doi: 10.1073/pnas.1315461111. PubMed DOI PMC

Katewa S.D., Demontis F., Kolipinski M., Hubbard A., Gill M.S., Perrimon N., Melov S., Kapahi P. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab. 2012;16:97–103. doi: 10.1016/j.cmet.2012.06.005. PubMed DOI PMC

Braco J.T., Gillespie E.L., Alberto G.E., Brenman J.E., Johnson E.C. Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase. Genetics. 2012;192:457–466. doi: 10.1534/genetics.112.143610. PubMed DOI PMC

Sajwan S., Sidorov R., Stašková T., Žaloudíková A., Takasu Y., Kodrík D., Zurovec M. Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. Insect Biochem. Mol. Biol. 2015;61:79–86. doi: 10.1016/j.ibmb.2015.01.011. PubMed DOI

Kannan K., Fridell Y.-W.C. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front. Physiol. 2013;4:288. doi: 10.3389/fphys.2013.00288. PubMed DOI PMC

Nässel D.R., Liu Y., Luo J. Insulin/IGF signaling and its regulation in Drosophila. Gen. Comp. Endocrinol. 2015 doi: 10.1016/j.ygcen.2014.11.021. PubMed DOI

Maier V., Fuchs J., Pfeiffer E.F., Bounias M. Glucagon as a non species-specific regulator of the glycaemia in honeybee (Apis mellifica) Diabete Matab. 1990;16:428–434. PubMed

Alquicer G., Kodrík D., Krishnan N., Vecera J., Socha R. Activation of insect anti-oxidative mechanisms by mammalian glucagon. Comp. Biochem. Physiol. B. 2009;152:226–233. doi: 10.1016/j.cbpb.2008.11.007. PubMed DOI

Bednářová A., Kodrík D., Krishnan N. Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects. Comp. Biochem. Physiol. A. 2013;164:91–100. doi: 10.1016/j.cbpa.2012.10.012. PubMed DOI

Veenstra J.A. Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett. 1989;250:231–234. doi: 10.1016/0014-5793(89)80727-6. PubMed DOI

Boerjan B., Verleyen P., Huybrechts J., Schoofs L., de Loof A. In search for a common denominator for the diverse functions of arthropod corazonin: A role in the physiology of stress? Gen. Comp. Endocrinol. 2010;166:222–233. doi: 10.1016/j.ygcen.2009.09.004. PubMed DOI

Veenstra J.A. Does corazonin signal nutritional stress in insects? Insect Biochem. Mol. Biol. 2009;39:755–762. doi: 10.1016/j.ibmb.2009.09.008. PubMed DOI

Zhao Y., Bretz C.A., Hawksworth S.A., Hirsh J., Johnson E.C. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS ONE. 2010;5:e9141. doi: 10.1371/journal.pone.0009141. PubMed DOI PMC

Ishizaki H., Suzuki A. The brain secretory peptides that control moulting and metamorphosis of the silkmoth, Bombyx mori. Int. J. Dev. Biol. 1994;38:301–310. PubMed

Kawakami A., Kataoka H., Oka T., Mizoguchi A., Kimura-Kawakami M., Adachi T., Iwami M., Nagasawa H., Suzuki A., Ishizaki H. Molecular cloning of the Bombyx mori prothoracicotropic hormone. Science. 1990;247:1333–1335. doi: 10.1126/science.2315701. PubMed DOI

Agui N., Bollenbacher W.E., Granger N.A., Gilbert L.I. Corpus allatum is release site for insect prothoracicotropic hormone. Nature. 1980;285:669–670. doi: 10.1038/285669a0. DOI

Perić-Mataruga V., Vlahović M., Mrdaković M., Todorović D., Matić D., Gavrilović A., Ilijin L. Prothoracicotropic hormone-producing neurosecretory neurons and antioxidative defense in midgut of Lymantria dispar in trophic stress. TURKISH J. Biol. 2014;38:403–411. doi: 10.3906/biy-1309-57. DOI

Krishnan N., Večeřa J., Kodrík D., Sehnal F. 20-Hydroxyecdysone prevents oxidative stress damage in adult Pyrrhocoris apterus. Arch. Insect Biochem. Physiol. 2007;65:114–124. doi: 10.1002/arch.20182. PubMed DOI

Roesijadi G., Rezvankhah S., Binninger D.M., Weissbach H. Ecdysone induction of MsrA protects against oxidative stress in Drosophila. Biochem. Biophys. Res. Commun. 2007;354:511–516. doi: 10.1016/j.bbrc.2007.01.005. PubMed DOI

Brot N., Weissbach H. Biochemistry of methionine sulfoxide residues in proteins. Biofactors. 1991;3:91–96. PubMed

Weissbach H., Resnick L., Brot N. Methionine sulfoxide reductases: History and cellular role in protecting against oxidative damage. Biochim. Biophys. Acta Proteins Proteom. 2005;1703:203–212. doi: 10.1016/j.bbapap.2004.10.004. PubMed DOI

Hu X., Cherbas L., Cherbas P. Transcription activation by the ecdysone receptor (EcR/USP): Identification of activation functions. Mol. Endocrinol. 2003;17:716–731. doi: 10.1210/me.2002-0287. PubMed DOI

Moskovitz J., Bar-Noy S., Williams W.M., Requena J., Berlett B.S., Stadtman E.R. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. USA. 2001;98:12920–12925. doi: 10.1073/pnas.231472998. PubMed DOI PMC

Kantorow M., Hawse J.R., Cowell T.L., Benhamed S., Pizarro G.O., Reddy V.N., Hejtmancik J.F. Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc. Natl. Acad. Sci. USA. 2004;101:9654–9659. doi: 10.1073/pnas.0403532101. PubMed DOI PMC

Hu J., Luo C.X., Chu W.H., Shan Y.A., Qian Z.M., Zhu G., Yu Y.B., Feng H. 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-κB and JNK pathways. PLoS ONE. 2012;7:e50764. doi: 10.1371/journal.pone.0050764. PubMed DOI PMC

Lacort M., Leal A.M., Liza M., Martín C., Martínez R., Ruiz-Larrea M.B. Protective effect of estrogens and catecholestrogens against peroxidative membrane damagein vitro. Lipids. 1995;30:141–146. doi: 10.1007/BF02538267. PubMed DOI

Yamamoto R., Bai H., Dolezal A.G., Amdam G., Tatar M. Juvenile hormone regulation of Drosophila aging. BMC Biol. 2013;11:85. doi: 10.1186/1741-7007-11-85. PubMed DOI PMC

Sezer B., Ozalp P. Effect of juvenile hormone analogue, pyriproxyfen on antioxidant enzymes of greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae: Galleriinae) Larvae. Pak. J. Zool. 2015;47:665–669.

Fahmy N. Impact of two insect growth regulators on the enhancement of oxidative stress and antioxidant efficiency of the cotton leaf worm, Spodoptera littoralis (Biosd.) Egypt. Acad. J. Biol. Sci. 2012;5:137–149.

Zou F.M., Lou D.S., Zhu Y.H., Wang S.P., Jin B.R., Gui Z.Z. Expression profiles of glutathione S-transferase genes in larval midgut of Bombyx mori exposed to insect hormones. Mol. Biol. Rep. 2011;38:639–647. doi: 10.1007/s11033-010-0150-y. PubMed DOI

Seehuus S.C., Norberg K., Gimsa U., Krekling T., Amdam G.V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA. 2006;103:962–967. doi: 10.1073/pnas.0502681103. PubMed DOI PMC

Jamroz R.C., Gasdaska J.R., Bradfield J.Y., Law J.H. Transferrin in a cockroach: Molecular cloning, characterization, and suppression by juvenile hormone. Proc. Natl. Acad. Sci. USA. 1993;90:1320–1324. doi: 10.1073/pnas.90.4.1320. PubMed DOI PMC

Harizanova N., Georgieva T., Dunkov B.C., Yoshiga T., Law J.H. Aedes aegypti transferrin. Gene structure, expression pattern, and regulation. Insect Mol. Biol. 2005;14:79–88. doi: 10.1111/j.1365-2583.2004.00533.x. PubMed DOI

Chapman R.F. The insects: structure and function. 4th ed. Cambridge University Press; Cambridge, UK; New York, NY, USA; Melbourne, Australia: 1998.

Andrus P.K., Fleck T.J., Gurney M.E., Hall E.D. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 1998;71:2041–2048. doi: 10.1046/j.1471-4159.1998.71052041.x. PubMed DOI

Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Radic. Biol. Med. 1997;23:783–792. doi: 10.1016/S0891-5849(97)00016-6. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences

. 2024 Oct 14 ; 15 (10) : . [epub] 20241014

Unusual functions of insect vitellogenins: minireview

. 2023 Dec 29 ; 72 (S5) : S475-S487.

The Influence of Selected Insecticides on the Oxidative Response of Atta sexdens (Myrmicinae, Attini) Workers

. 2023 Dec ; 52 (6) : 1088-1099. [epub] 20230901

Insect Body Defence Reactions against Bee Venom: Do Adipokinetic Hormones Play a Role?

. 2021 Dec 23 ; 14 (1) : . [epub] 20211223

Adipokinetic Hormones Enhance the Efficacy of the Entomopathogenic Fungus Isaria fumosorosea in Model and Pest Insects

. 2020 Sep 28 ; 9 (10) : . [epub] 20200928

Lutzomyia longipalpis TGF-β Has a Role in Leishmania infantum chagasi Survival in the Vector

. 2019 ; 9 () : 71. [epub] 20190327

Disruption of Adipokinetic Hormone Mediated Energy Homeostasis Has Subtle Effects on Physiology, Behavior and Lipid Status During Aging in Drosophila

. 2018 ; 9 () : 949. [epub] 20180720

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...