Hormonal Regulation of Response to Oxidative Stress in Insects-An Update
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
26516847
PubMed Central
PMC4632827
DOI
10.3390/ijms161025788
PII: ijms161025788
Knihovny.cz E-resources
- Keywords
- AKH gene, FoxO, adipokinetic hormones (AKH), anti-oxidative mechanisms, free radicals, insect endocrine system, insecticide, oxidative stress, signaling pathway,
- MeSH
- Insecta metabolism MeSH
- Insect Hormones metabolism MeSH
- Pyrrolidonecarboxylic Acid analogs & derivatives metabolism MeSH
- Oligopeptides metabolism MeSH
- Oxidative Stress * MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- adipokinetic hormone MeSH Browser
- Insect Hormones MeSH
- Pyrrolidonecarboxylic Acid MeSH
- Oligopeptides MeSH
Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH's role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers-disturbed by the stressors-after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3',5'-monophosphate pathways in the presence of extra and intra-cellular Ca(2+) stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed.
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
See more in PubMed
Fridovich I. Mitochondria: Are they the seat of senescence? Aging Cell. 2004;3:13–16. doi: 10.1046/j.1474-9728.2003.00075.x. PubMed DOI
Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. 3rd ed. Oxford University Press; New York, NY, USA: 1999.
Dupuy C., Virion A., Ohayon R. Mechanism of hydrogen peroxide formation catalyzed by NADPH oxidase in thyroid plasma membrane. J. Biol. Chem. 1991;266:3739–3743. PubMed
Granger D.N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. 1988;255:H1269–H1275. doi: 10.1016/0883-9441(89)90011-7. PubMed DOI
Fenton H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894;65:899–910. doi: 10.1039/ct8946500899. DOI
Haber F., Weiss J.J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1934;147:332–351. doi: 10.1098/rspa.1934.0221. DOI
Liochev S.I., Fridovich I. The Haber-Weiss cycle—70 years later: An alternative view. Redox Rep. 2002;7:55–57. doi: 10.1179/135100002125000190. PubMed DOI
Biaglow J.E., Mitchell J.B., Held K. The importance of peroxide and superoxide in the X-ray response. Int. J. Radiat. Oncol. Biol. Phys. 1992;22:665–669. doi: 10.1016/0360-3016(92)90499-8. PubMed DOI
Chiu S.M., Xue L.Y., Friedman L.R., Oleinick N.L. Copper ion-mediated sensitization of nuclear matrix attachment sites to ionizing radiation. Biochemistry. 1993;32:6214–6219. doi: 10.1021/bi00075a014. PubMed DOI
Hiltermann J.T., Lapperre T.S., van Bree L., Steerenberg P.A., Brahim J.J., Sont J.K., Sterk P.J., Hiemstra P.S., Stolk J. Ozone-induced inflammation assessed in sputum and bronchial lavage fluid from asthmatics. Free Radic. Biol. Med. 1999;27:1448–1454. doi: 10.1016/S0891-5849(99)00191-4. PubMed DOI
Bagchi D., Bagchi M., Hassoun E.A., Stohs S.J. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995;104:129–140. doi: 10.1016/0300-483X(95)03156-A. PubMed DOI
Melchiorri D., Ortiz G.G., Reiter R.J., Sewerynek E., Daniels W.M., Pablos M.I., Nisticò G. Melatonin reduces paraquat-induced genotoxicity in mice. Toxicol. Lett. 1998;95:103–108. doi: 10.1016/S0378-4274(98)00025-3. PubMed DOI
Ledirac N., Antherieu S., d’Uby A.D., Caron J.-C., Rahmani R. Effects of organochlorine insecticides on MAP kinase pathways in human HaCaT keratinocytes: key role of reactive oxygen species. Toxicol. Sci. 2005;86:444–452. doi: 10.1093/toxsci/kfi192. PubMed DOI
Ahmad S. Oxidative stress from environmental pollutants. Arch. Insect Biochem. Physiol. 1995;29:135–157. doi: 10.1002/arch.940290205. PubMed DOI
Bi J.L., Felton G.W. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 1995;21:1511–1530. doi: 10.1007/BF02035149. PubMed DOI
Souza A.V.G., Petretski J.H., Demasi M., Bechara E.J.H., Oliveira P.L. Urate protects a blood-sucking insect against hemin-induced oxidative stress. Free Radic. Biol. Med. 1997;22:209–214. doi: 10.1016/S0891-5849(96)00293-6. PubMed DOI
Lalouette L., Williams C.M., Hervant F., Sinclair B.J., Renault D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. 2011;158:229–234. doi: 10.1016/j.cbpa.2010.11.007. PubMed DOI
Meng J.-Y., Zhang C.-Y., Zhu F., Wang X.-P., Lei C.-L. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. J. Insect Physiol. 2009;55:588–592. doi: 10.1016/j.jinsphys.2009.03.003. PubMed DOI
Felton G.W., Summers C.B. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 1995;29:187–197. doi: 10.1002/arch.940290208. PubMed DOI
Perić-Mataruga V., Nenadović V., Ivanović J. Neurohormones in insect stress: A review. Arch. Biol. Sci. 2006;58:1–12. doi: 10.2298/ABS0601006P. DOI
Krishnan N., Kodrík D. Endocrine control of oxidative stress in insects. In: Farooqui T., Farooqui A.A., editors. Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling. Wiley-Blackwell; New Jersey, NJ, USA: 2012. pp. 261–270.
Gilbert L.I., Yatrou K., Gill S.S. Comprehensive Molecular Insect Science. Volume 3. Elsevier; Oxford, UK: 2005. p. 842.
Nijhout H.F. Insect Hormones. Princeton University Press; Princeton, NJ, USA: 1998.
Gäde G., Hoffmann K.H., Spring J.H. Hormonal regulation in insects: Facts, gaps, and future directions. Physiol. Rev. 1997;77:963–1032. PubMed
Gäde G., Auerswald L. Mode of action of neuropeptides from the adipokinetic hormone family. Gen. Comp. Endocrinol. 2003;132:10–20. doi: 10.1016/S0016-6480(03)00159-X. PubMed DOI
Kodrík D. Adipokinetic hormone functions that are not associated with insect flight. Physiol. Entomol. 2008;33:171–180. doi: 10.1111/j.1365-3032.2008.00625.x. DOI
Scarborough R.M., Jamieson G.C., Kalish F., Kramer S.J., McEnroe G.A., Miller C.A., Schooley D.A. Isolation and primary structure of two peptides with cardioacceleratory and hyperglycemic activity from the corpora cardiaca of Periplaneta americana. Proc. Natl. Acad. Sci. USA. 1984;81:5575–5579. doi: 10.1073/pnas.81.17.5575. PubMed DOI PMC
Kodrík D., Socha R., Šimek P., Zemek R., Goldsworthy G.J. A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera) Insect Biochem. Mol. Biol. 2000;30:489–498. doi: 10.1016/S0965-1748(00)00025-4. PubMed DOI
Goldsworthy G., Opoku-Ware K., Mullen L. Adipokinetic hormone enhances laminarin and bacterial lipopolysaccharide-induced activation of the prophenoloxidase cascade in the African migratory locust, Locusta migratoria. J. Insect Physiol. 2002;48:601–608. doi: 10.1016/S0022-1910(02)00085-9. PubMed DOI
Lee G., Park J.H. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics. 2004;167:311–323. doi: 10.1534/genetics.167.1.311. PubMed DOI PMC
Kodrík D., Krishnan N., Habuštová O. Is the titer of adipokinetic peptides in Leptinotarsa decemlineata fed on genetically modified potatoes increased by oxidative stress? Peptides. 2007;28:974–980. doi: 10.1016/j.peptides.2007.01.017. PubMed DOI
Kodrík D., Vinokurov K., Tomčala A., Socha R. The effect of adipokinetic hormone on midgut characteristics in Pyrrhocoris apterus L. (Heteroptera) J. Insect Physiol. 2012;58:194–204. doi: 10.1016/j.jinsphys.2011.11.010. PubMed DOI
Vinokurov K., Bednářová A., Tomčala A., Stašková T., Krishnan N., Kodrík D. Role of adipokinetic hormone in stimulation of salivary gland activities: The fire bug Pyrrhocoris apterus L. (Heteroptera) as a model species. J. Insect Physiol. 2014;60:58–67. doi: 10.1016/j.jinsphys.2013.11.005. PubMed DOI
Bil M., Broeckx V., Landuyt B., Huybrechts R. Differential peptidomics highlights adipokinetic hormone as key player in regulating digestion in anautogenous flesh fly, Sarcophaga crassipalpis. Gen. Comp. Endocrinol. 2014;208:49–56. doi: 10.1016/j.ygcen.2014.08.016. PubMed DOI
Večeřa J., Krishnan N., Alquicer G., Kodrík D., Socha R. Adipokinetic hormone-induced enhancement of antioxidant capacity of Pyrrhocoris apterus hemolymph in response to oxidative stress. Comp. Biochem. Physiol. C. 2007;146:336–342. doi: 10.1016/j.cbpc.2007.04.005. PubMed DOI
Bednářová A., Krishnan N., Cheng I.-C., Večeřa J., Lee H.-J., Kodrík D. Adipokinetic hormone counteracts oxidative stress elicited in insects by hydrogen peroxide: in vivo and in vitro study. Physiol. Entomol. 2013;38:54–62. doi: 10.1111/phen.12008. DOI
Velki M., Kodrík D., Večeřa J., Hackenberger B.K., Socha R. Oxidative stress elicited by insecticides: A role for the adipokinetic hormone. Gen. Comp. Endocrinol. 2011;172:77–84. doi: 10.1016/j.ygcen.2010.12.009. PubMed DOI
Plavšin I., Stašková T., Šerý M., Smýkal V., Hackenberger B.K., Kodrík D. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: Oxidative stress and metabolic aspects. Comp. Biochem. Physiol. C. 2015;170:19–27. doi: 10.1016/j.cbpc.2015.01.005. PubMed DOI
Kodrík D., Socha R., Syrová Z. Developmental and diel changes of adipokinetic hormone in CNS and haemolymph of the flightless wing-polymorphic bug, Pyrrhocoris apterus (L.) J. Insect Physiol. 2003;49:53–61. doi: 10.1016/S0022-1910(02)00245-7. PubMed DOI
Diederen J.H.B., Oudejans R.C.H.M., Harthoorn L.F., van der Horst D.J. Cell biology of the adipokinetic hormone-producing neurosecretory cells in the locust corpus cardiacum. Microsc. Res. Tech. 2002;56:227–236. doi: 10.1002/jemt.10026. PubMed DOI
Scott M., Lubin B., Zuo L., Zuo L., Kuypers F. Erythrocyte defense against hydrogen peroxide: preeminent importance of catalase. J. Lab. Clin. Med. 1991;118:7–16. PubMed
Mendis E., Rajapakse N., Kim S.-K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 2005;53:581–587. doi: 10.1021/jf048877v. PubMed DOI
Burlakova E.B., Zhizhina G.P., Gurevich S.M., Fatkullina L.D., Kozachenko A.I., Nagler L.G., Zavarykina T.M., Kashcheev V.V. Biomarkers of oxidative stress and smoking in cancer patients. J. Cancer Res. Ther. 2010;6:47–53. PubMed
Večeřa J., Krishnan N., Mithöfer A., Vogel H., Kodrík D. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis. Comp. Biochem. Physiol. C. 2012;155:389–395. doi: 10.1016/j.cbpc.2011.10.009. PubMed DOI
Whiteside C., Hassan H.M. Induction and inactivation of catalase and superoxide dismutase of Escherichia coli by ozone. Arch. Biochem. Biophys. 1987;257:464–471. doi: 10.1016/0003-9861(87)90591-1. PubMed DOI
Farr S.B., Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Mol. Biol. Rev. 1991;55:561–585. PubMed PMC
Mannervik B., Danielson U.H., Ketterer B. Glutathione transferases—Structure and catalytic activity. CRC Crit. Rev. Biochem. 1988;23:283–337. doi: 10.3109/10409238809088226. PubMed DOI
Sawicki R., Singh S.P., Mondal A.K., Benes H., Zimniak P. Cloning, expression and biochemical characterization of one ɛ-class (GST-3) and ten Δ-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochem. J. 2003;370:661–669. doi: 10.1042/bj20021287. PubMed DOI PMC
Ploemen J.H.T.M., van Ommen B., de Haan A., Schefferlie J.G., van Bladeren P.J. In vitro and in vivo reversible and irreversible inhibition of rat glutathione S-transferase isoenzymes by caffeic acid and its 2-S-glutathionyl conjugate. Food Chem. Toxicol. 1993;31:475–482. doi: 10.1016/0278-6915(93)90106-9. PubMed DOI
Kosower N.S., Kosower E.M. The glutathione status of cells. Int. Rev. Cytol. 1978;54:109–160. PubMed
Lomaestro B.M., Malone M. Glutathione in health and disease: Pharmacotherapeutic issues. Ann. Pharmacother. 1995;29:1263–1273. PubMed
Chevion M., Berenshtein E., Stadtman E.R. Human studies related to protein oxidation: Protein carbonyl content as a marker of damage. Free Radic. Res. 2000;33:S99–S108. PubMed
Kodrík D., Bártů I., Socha R. Adipokinetic hormone (Pyrap-AKH) enhances the effect of a pyrethroid insecticide against the firebug Pyrrhocoris apterus. Pest. Manag. Sci. 2010;66:425–431. doi: 10.1002/ps.1894. PubMed DOI
Kodrík D., Stašková T., Jedličková V., Weyda F., Závodská R., Pflegerová J. Molecular characterization, tissue distribution, and ultrastructural localization of adipokinetic hormones in the CNS of the firebug Pyrrhocoris apterus (Heteroptera, Insecta) Gen. Comp. Endocrinol. 2015;210:1–11. doi: 10.1016/j.ygcen.2014.10.014. PubMed DOI
Janero D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 1990;9:515–540. doi: 10.1016/0891-5849(90)90131-2. PubMed DOI
Slocinska M., Antos-Krzeminska N., Rosinski G., Jarmuszkiewicz W. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana. J. Bioenerg. Biomembr. 2011;43:717–727. doi: 10.1007/s10863-011-9385-0. PubMed DOI
Slocinska M., Antos-Krzeminska N., Golebiowski M., Kuczer M., Stepnowski P., Rosinski G., Jarmuszkiewicz W. UCP4 expression changes in larval and pupal fat bodies of the beetle Zophobas atratus under adipokinetic hormone treatment. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013;166:52–59. doi: 10.1016/j.cbpa.2013.05.009. PubMed DOI
Sluse F.E., Jarmuszkiewicz W., Navet R., Douette P., Mathy G., Sluse-Goffart C.M. Mitochondrial UCPs: New insights into regulation and impact. Biochim. Biophys. Acta. 2006;1757:480–485. doi: 10.1016/j.bbabio.2006.02.004. PubMed DOI
Sánchez-Blanco A., Fridell Y.-W.C., Helfand S.L. Involvement of Drosophila uncoupling protein 5 in metabolism and aging. Genetics. 2006;172:1699–1710. doi: 10.1534/genetics.105.053389. PubMed DOI PMC
Gáliková M., Diesner M., Klepsatel P., Hehlert P., Xu Y., Bickmeyer I., Predel R., Kühnlein R.P. Energy homeostasis control in Drosophila adipokinetic hormone mutants. Genetics. 2015;201 doi: 10.1534/genetics.115.178897. PubMed DOI PMC
Singh G.J.P., Orchard I. Is insecticide-induced release of insect neurohormones a secondary effect of hyperactivity of the central nervous system? Pestic. Biochem. Physiol. 1982;17:232–242. doi: 10.1016/0048-3575(82)90134-1. DOI
Candy D.J. Adipokinetic hormones concentrations in the haemolymph of Schistocerca gregaria, measured by radioimmunoassay. Insect Biochem. Mol. Biol. 2002;32:1361–1367. doi: 10.1016/S0965-1748(02)00056-5. PubMed DOI
Kodrík D., Socha R. The effect of insecticide on adipokinetic hormone titre in the insect body. Pest. Manag. Sci. 2005;61:1077–1082. doi: 10.1002/ps.1087. PubMed DOI
Che-Mendoza A., Penilla R., Rodríguez D. Insecticide resistance and glutathione S-transferases in mosquitoes: A review. Afr. J. Biotechnol. 2009;8:1386–1397.
Vontas J.G., Small G.J., Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem. J. 2001;357:65–72. doi: 10.1042/bj3570065. PubMed DOI PMC
Fragoso D.B., Guedes R.N.C., Rezende S.T. Glutathione S-transferase detoxification as a potential pyrethroid resistance mechanism in the maize weevil, Sitophilus zeamais. Entomol. Exp. Appl. 2003;109:21–29. doi: 10.1046/j.1570-7458.2003.00085.x. DOI
Kostaropoulos I., Papadopoulos A.I., Metaxakis A., Boukouvala E., Papadopoulou-Mourkidou E. Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem. Mol. Biol. 2001;31:313–319. doi: 10.1016/S0965-1748(00)00123-5. PubMed DOI
Staubli F., Jorgensen T.J.D., Cazzamali G., Williamson M., Lenz C., Sondergaard L., Roepstorff P., Grimmelikhuijzen C.J.P. Molecular identification of the insect adipokinetic hormone receptors. Proc. Natl. Acad. Sci. USA. 2002;99:3446–3451. doi: 10.1073/pnas.052556499. PubMed DOI PMC
Caers J., Verlinden H., Zels S., Vandersmissen H.P., Vuerinckx K., Schoofs L. More than two decades of research on insect neuropeptide GPCRs: An overview. Front. Endocrinol. 2012;3:151. doi: 10.3389/fendo.2012.00151. PubMed DOI PMC
Park Y., Kim Y.-J., Adams M.E. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc. Natl. Acad. Sci. USA. 2002;99:11423–11428. doi: 10.1073/pnas.162276199. PubMed DOI PMC
Zhu C., Huang H., Hua R., Li G., Yang D., Luo J., Zhang C., Shi L., Benovic J.L., Zhou N. Molecular and functional characterization of adipokinetic hormone receptor and its peptide ligands in Bombyx mori. FEBS Lett. 2009;583:1463–1468. doi: 10.1016/j.febslet.2009.03.060. PubMed DOI PMC
Hansen K.K., Hauser F., Cazzamali G., Williamson M., Grimmelikhuijzen C.J.P. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana. Biochem. Biophys. Res. Commun. 2006;343:638–643. doi: 10.1016/j.bbrc.2006.03.012. PubMed DOI
Kaufmann C., Brown M.R. Adipokinetic hormones in the African malaria mosquito, Anopheles gambiae: Identification and expression of genes for two peptides and a putative receptor. Insect Biochem. Mol. Biol. 2006;36:466–481. doi: 10.1016/j.ibmb.2006.03.009. PubMed DOI
Wicher D., Agricola H.-J., Söhler S., Gundel M., Heinemann S.H., Wollweber L., Stengl M., Derst C. Differential receptor activation by cockroach adipokinetic hormones produces differential effects on ion currents, neuronal activity, and locomotion. J. Neurophysiol. 2006;95:2314–2325. doi: 10.1152/jn.01007.2005. PubMed DOI
Kaufmann C., Merzendorfer H., Gäde G. The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti. Insect Biochem. Mol. Biol. 2009;39:770–781. doi: 10.1016/j.ibmb.2009.09.002. PubMed DOI
Ziegler R., Isoe J., Moore W., Riehle M.A., Wells M.A. The putative AKH receptor of the tobacco hornworm, Manduca sexta, and its expression. J. Insect Sci. 2011;11:40. doi: 10.1673/031.011.0140. PubMed DOI PMC
Spencer I.M., Candy D.J. Hormonal control of diacyl glycerol mobilization from fat body of the desert locust, Schistocerca gregaria. Insect Biochem. 1976;6:289–296. doi: 10.1016/0020-1790(76)90096-2. DOI
Vroemen S.F., van Marrewijk W.J.A., de Meijer J., van den Broek A.T., van der Horst D.J. Differential induction of inositol phosphate metabolism by three adipokinetic hormones. Mol. Cell. Endocrinol. 1997;130:131–139. doi: 10.1016/S0303-7207(97)00083-X. PubMed DOI
Van der Horst D.J., van Marrewijk W.J.A., Diederen J.H. Adipokinetic hormones of insect: Release, signal transduction, and responses. Int. Rev. Cytol. 2001;211:179–240. PubMed
Bednářová A., Kodrík D., Krishnan N. Adipokinetic hormone exerts its anti-oxidative effects using a conserved signal-transduction mechanism involving both PKC and cAMP by mobilizing extra- and intracellular Ca2+ stores. Comp. Biochem. Physiol. C. 2013;158:142–149. doi: 10.1016/j.cbpc.2013.07.002. PubMed DOI
Bednářová A., Kodrík D., Krishnan N. Knockdown of adipokinetic hormone synthesis increases susceptibility to oxidative stress in Drosophila—A role for dFoxO? Comp. Biochem. Physiol. C. 2015;171:8–14. doi: 10.1016/j.cbpc.2015.03.006. PubMed DOI
Zheng X., Yang Z., Yue Z., Alvarez J.D., Sehgal A. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc. Natl. Acad. Sci. USA. 2007;104:15899–15904. PubMed PMC
Süren-Castillo S., Abrisqueta M., Maestro J.L. FoxO is required for the activation of hypertrehalosemic hormone expression in cockroaches. Biochim. Biophys. Acta. 2014;1840:86–94. doi: 10.1016/j.bbagen.2013.08.015. PubMed DOI
Hay N. Interplay between FOXO, TOR, and Akt. Biochim. Biophys. Acta. 2011;1813:1965–1970. doi: 10.1016/j.bbamcr.2011.03.013. PubMed DOI PMC
Lee J.H., Budanov A.V., Park E.J., Birse R., Kim T.E., Perkins G.A., Ocorr K., Ellisman M.H., Bodmer R., Bier E., Karin M. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science. 2010;327:1223–1228. doi: 10.1126/science.1182228. PubMed DOI PMC
Peeters H., Debeer P., Bairoch A., Wilquet V., Huysmans C., Parthoens E., Fryns J.P., Gewillig M., Nakamura Y., Niikawa N., et al. PA26 is a candidate gene for heterotaxia in humans: Identification of a novel PA26-related gene family in human and mouse. Hum. Genet. 2003;112:573–580. PubMed
Budanov A.V, Sablina A.A., Feinstein E., Koonin E.V, Chumakov P.M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004;304:596–600. doi: 10.1126/science.1095569. PubMed DOI
Budanov A.V, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134:451–460. doi: 10.1016/j.cell.2008.06.028. PubMed DOI PMC
Eijkelenboom A., Burgering B.M.T. FOXOs: Signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 2013;14:83–97. doi: 10.1038/nrm3507. PubMed DOI
Jünger M.A., Rintelen F., Stocker H., Wasserman J.D., Végh M., Radimerski T., Greenberg M.E., Hafen E. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2003;2:20. doi: 10.1186/1475-4924-2-20. PubMed DOI PMC
Mattila J., Bremer A., Ahonen L., Kostiainen R., Puig O. Drosophila FoxO regulates organism size and stress resistance through an adenylate cyclase. Mol. Cell. Biol. 2009;29:5357–5365. doi: 10.1128/MCB.00302-09. PubMed DOI PMC
Tong J.J., Schriner S.E., McCleary D., Day B.J., Wallace D.C. Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nat. Genet. 2007;39:476–485. doi: 10.1038/ng2004. PubMed DOI
Wang B., Goode J., Best J., Meltzer J., Schilman P.E., Chen J., Garza D., Thomas J.B., Montminy M. The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila. Cell Metab. 2008;7:434–444. doi: 10.1016/j.cmet.2008.02.010. PubMed DOI PMC
Essers M.A.G., Weijzen S., de Vries-Smits A.M.M., Saarloos I., de Ruiter N.D., Bos J.L., Burgering B.M.T. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 2004;23:4802–4812. doi: 10.1038/sj.emboj.7600476. PubMed DOI PMC
Wang M.C., Bohmann D., Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell. 2005;121:115–125. doi: 10.1016/j.cell.2005.02.030. PubMed DOI
Kawamori D., Kaneto H., Nakatani Y., Matsuoka T.-A., Matsuhisa M., Hori M., Yamasaki Y. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 2006;281:1091–1098. doi: 10.1074/jbc.M508510200. PubMed DOI
Kops G.J., de Ruiter N.D., de Vries-Smits A.M., Powell D.R., Bos J.L., Burgering B.M. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature. 1999;398:630–634. PubMed
Biggs W.H., Meisenhelder J., Hunter T., Cavenee W.K., Arden K.C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA. 1999;96:7421–7426. doi: 10.1073/pnas.96.13.7421. PubMed DOI PMC
Glauser D.A., Schlegel W. The emerging role of FOXO transcription factors in pancreatic β cells. J. Endocrinol. 2007;193:195–207. doi: 10.1677/JOE-06-0191. PubMed DOI
Buch S., Melcher C., Bauer M., Katzenberger J., Pankratz M.J. Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab. 2008;7:321–332. doi: 10.1016/j.cmet.2008.02.012. PubMed DOI
Zhao H.W., Haddad G.G. Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster. Placenta. 2011;32:S104–S108. doi: 10.1016/j.placenta.2010.11.017. PubMed DOI PMC
Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–2195. doi: 10.1126/science.287.5461.2185. PubMed DOI
Noyes B.E., Katz F.N., Schaffer M.H. Identification and expression of the Drosophila adipokinetic hormone gene. Mol. Cell. Endocrinol. 1995;109:133–141. doi: 10.1016/0303-7207(95)03492-P. PubMed DOI
Schaffer M.H., Noyes B.E., Slaughter C.A., Thorne G.C., Gaskell S.J. The fruitfly Drosophila melanogaster contains a novel charged adipokinetic-hormone-family peptide. Biochem. J. 1990;269:315–320. doi: 10.1042/bj2690315. PubMed DOI PMC
Grönke S., Müller G., Hirsch J., Fellert S., Andreou A., Haase T., Jäckle H., Kühnlein R.P. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol. 2007;5:e137. doi: 10.1371/journal.pbio.0050137. PubMed DOI PMC
Bharucha K.N., Tarr P., Zipursky S.L. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J. Exp. Biol. 2008;211:3103–3110. doi: 10.1242/jeb.016451. PubMed DOI PMC
Baumbach J., Xu Y., Hehlert P., Kühnlein R.P. Gαq, Gγ1 and Plc21C control Drosophila body fat storage. J. Genet. Genom. 2014;41:283–292. doi: 10.1016/j.jgg.2014.03.005. PubMed DOI
Kim S.K., Rulifson E.J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature. 2004;431:316–320. doi: 10.1038/nature02897. PubMed DOI
Isabel G., Martin J.-R., Chidami S., Veenstra J.A., Rosay P. AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005;288:R531–R538. PubMed
Waterson M.J., Chung B.Y., Harvanek Z.M., Ostojic I., Alcedo J., Pletcher S.D. Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling. Proc. Natl. Acad. Sci. USA. 2014;111:8137–8142. doi: 10.1073/pnas.1315461111. PubMed DOI PMC
Katewa S.D., Demontis F., Kolipinski M., Hubbard A., Gill M.S., Perrimon N., Melov S., Kapahi P. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab. 2012;16:97–103. doi: 10.1016/j.cmet.2012.06.005. PubMed DOI PMC
Braco J.T., Gillespie E.L., Alberto G.E., Brenman J.E., Johnson E.C. Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase. Genetics. 2012;192:457–466. doi: 10.1534/genetics.112.143610. PubMed DOI PMC
Sajwan S., Sidorov R., Stašková T., Žaloudíková A., Takasu Y., Kodrík D., Zurovec M. Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. Insect Biochem. Mol. Biol. 2015;61:79–86. doi: 10.1016/j.ibmb.2015.01.011. PubMed DOI
Kannan K., Fridell Y.-W.C. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front. Physiol. 2013;4:288. doi: 10.3389/fphys.2013.00288. PubMed DOI PMC
Nässel D.R., Liu Y., Luo J. Insulin/IGF signaling and its regulation in Drosophila. Gen. Comp. Endocrinol. 2015 doi: 10.1016/j.ygcen.2014.11.021. PubMed DOI
Maier V., Fuchs J., Pfeiffer E.F., Bounias M. Glucagon as a non species-specific regulator of the glycaemia in honeybee (Apis mellifica) Diabete Matab. 1990;16:428–434. PubMed
Alquicer G., Kodrík D., Krishnan N., Vecera J., Socha R. Activation of insect anti-oxidative mechanisms by mammalian glucagon. Comp. Biochem. Physiol. B. 2009;152:226–233. doi: 10.1016/j.cbpb.2008.11.007. PubMed DOI
Bednářová A., Kodrík D., Krishnan N. Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects. Comp. Biochem. Physiol. A. 2013;164:91–100. doi: 10.1016/j.cbpa.2012.10.012. PubMed DOI
Veenstra J.A. Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett. 1989;250:231–234. doi: 10.1016/0014-5793(89)80727-6. PubMed DOI
Boerjan B., Verleyen P., Huybrechts J., Schoofs L., de Loof A. In search for a common denominator for the diverse functions of arthropod corazonin: A role in the physiology of stress? Gen. Comp. Endocrinol. 2010;166:222–233. doi: 10.1016/j.ygcen.2009.09.004. PubMed DOI
Veenstra J.A. Does corazonin signal nutritional stress in insects? Insect Biochem. Mol. Biol. 2009;39:755–762. doi: 10.1016/j.ibmb.2009.09.008. PubMed DOI
Zhao Y., Bretz C.A., Hawksworth S.A., Hirsh J., Johnson E.C. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS ONE. 2010;5:e9141. doi: 10.1371/journal.pone.0009141. PubMed DOI PMC
Ishizaki H., Suzuki A. The brain secretory peptides that control moulting and metamorphosis of the silkmoth, Bombyx mori. Int. J. Dev. Biol. 1994;38:301–310. PubMed
Kawakami A., Kataoka H., Oka T., Mizoguchi A., Kimura-Kawakami M., Adachi T., Iwami M., Nagasawa H., Suzuki A., Ishizaki H. Molecular cloning of the Bombyx mori prothoracicotropic hormone. Science. 1990;247:1333–1335. doi: 10.1126/science.2315701. PubMed DOI
Agui N., Bollenbacher W.E., Granger N.A., Gilbert L.I. Corpus allatum is release site for insect prothoracicotropic hormone. Nature. 1980;285:669–670. doi: 10.1038/285669a0. DOI
Perić-Mataruga V., Vlahović M., Mrdaković M., Todorović D., Matić D., Gavrilović A., Ilijin L. Prothoracicotropic hormone-producing neurosecretory neurons and antioxidative defense in midgut of Lymantria dispar in trophic stress. TURKISH J. Biol. 2014;38:403–411. doi: 10.3906/biy-1309-57. DOI
Krishnan N., Večeřa J., Kodrík D., Sehnal F. 20-Hydroxyecdysone prevents oxidative stress damage in adult Pyrrhocoris apterus. Arch. Insect Biochem. Physiol. 2007;65:114–124. doi: 10.1002/arch.20182. PubMed DOI
Roesijadi G., Rezvankhah S., Binninger D.M., Weissbach H. Ecdysone induction of MsrA protects against oxidative stress in Drosophila. Biochem. Biophys. Res. Commun. 2007;354:511–516. doi: 10.1016/j.bbrc.2007.01.005. PubMed DOI
Brot N., Weissbach H. Biochemistry of methionine sulfoxide residues in proteins. Biofactors. 1991;3:91–96. PubMed
Weissbach H., Resnick L., Brot N. Methionine sulfoxide reductases: History and cellular role in protecting against oxidative damage. Biochim. Biophys. Acta Proteins Proteom. 2005;1703:203–212. doi: 10.1016/j.bbapap.2004.10.004. PubMed DOI
Hu X., Cherbas L., Cherbas P. Transcription activation by the ecdysone receptor (EcR/USP): Identification of activation functions. Mol. Endocrinol. 2003;17:716–731. doi: 10.1210/me.2002-0287. PubMed DOI
Moskovitz J., Bar-Noy S., Williams W.M., Requena J., Berlett B.S., Stadtman E.R. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. USA. 2001;98:12920–12925. doi: 10.1073/pnas.231472998. PubMed DOI PMC
Kantorow M., Hawse J.R., Cowell T.L., Benhamed S., Pizarro G.O., Reddy V.N., Hejtmancik J.F. Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc. Natl. Acad. Sci. USA. 2004;101:9654–9659. doi: 10.1073/pnas.0403532101. PubMed DOI PMC
Hu J., Luo C.X., Chu W.H., Shan Y.A., Qian Z.M., Zhu G., Yu Y.B., Feng H. 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-κB and JNK pathways. PLoS ONE. 2012;7:e50764. doi: 10.1371/journal.pone.0050764. PubMed DOI PMC
Lacort M., Leal A.M., Liza M., Martín C., Martínez R., Ruiz-Larrea M.B. Protective effect of estrogens and catecholestrogens against peroxidative membrane damagein vitro. Lipids. 1995;30:141–146. doi: 10.1007/BF02538267. PubMed DOI
Yamamoto R., Bai H., Dolezal A.G., Amdam G., Tatar M. Juvenile hormone regulation of Drosophila aging. BMC Biol. 2013;11:85. doi: 10.1186/1741-7007-11-85. PubMed DOI PMC
Sezer B., Ozalp P. Effect of juvenile hormone analogue, pyriproxyfen on antioxidant enzymes of greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae: Galleriinae) Larvae. Pak. J. Zool. 2015;47:665–669.
Fahmy N. Impact of two insect growth regulators on the enhancement of oxidative stress and antioxidant efficiency of the cotton leaf worm, Spodoptera littoralis (Biosd.) Egypt. Acad. J. Biol. Sci. 2012;5:137–149.
Zou F.M., Lou D.S., Zhu Y.H., Wang S.P., Jin B.R., Gui Z.Z. Expression profiles of glutathione S-transferase genes in larval midgut of Bombyx mori exposed to insect hormones. Mol. Biol. Rep. 2011;38:639–647. doi: 10.1007/s11033-010-0150-y. PubMed DOI
Seehuus S.C., Norberg K., Gimsa U., Krekling T., Amdam G.V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA. 2006;103:962–967. doi: 10.1073/pnas.0502681103. PubMed DOI PMC
Jamroz R.C., Gasdaska J.R., Bradfield J.Y., Law J.H. Transferrin in a cockroach: Molecular cloning, characterization, and suppression by juvenile hormone. Proc. Natl. Acad. Sci. USA. 1993;90:1320–1324. doi: 10.1073/pnas.90.4.1320. PubMed DOI PMC
Harizanova N., Georgieva T., Dunkov B.C., Yoshiga T., Law J.H. Aedes aegypti transferrin. Gene structure, expression pattern, and regulation. Insect Mol. Biol. 2005;14:79–88. doi: 10.1111/j.1365-2583.2004.00533.x. PubMed DOI
Chapman R.F. The insects: structure and function. 4th ed. Cambridge University Press; Cambridge, UK; New York, NY, USA; Melbourne, Australia: 1998.
Andrus P.K., Fleck T.J., Gurney M.E., Hall E.D. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 1998;71:2041–2048. doi: 10.1046/j.1471-4159.1998.71052041.x. PubMed DOI
Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Radic. Biol. Med. 1997;23:783–792. doi: 10.1016/S0891-5849(97)00016-6. PubMed DOI
Unusual functions of insect vitellogenins: minireview
Insect Body Defence Reactions against Bee Venom: Do Adipokinetic Hormones Play a Role?
Lutzomyia longipalpis TGF-β Has a Role in Leishmania infantum chagasi Survival in the Vector