Protective Effects of D-Penicillamine on Catecholamine-Induced Myocardial Injury
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26788248
PubMed Central
PMC4691625
DOI
10.1155/2016/5213532
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- chelátory železa farmakologie MeSH
- deferoxamin farmakologie MeSH
- ionty MeSH
- kardiotonika chemie farmakologie MeSH
- katecholaminy MeSH
- koncentrace vodíkových iontů MeSH
- myokard patologie MeSH
- penicilamin chemie farmakologie MeSH
- potkani Wistar MeSH
- troponin T metabolismus MeSH
- viabilita buněk účinky léků MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chelátory železa MeSH
- deferoxamin MeSH
- ionty MeSH
- kardiotonika MeSH
- katecholaminy MeSH
- penicilamin MeSH
- troponin T MeSH
- železo MeSH
Iron and copper release participates in the myocardial injury under ischemic conditions and hence protection might be achieved by iron chelators. Data on copper chelation are, however, sparse. The effect of the clinically used copper chelator D-penicillamine in the catecholamine model of acute myocardial injury was tested in cardiomyoblast cell line H9c2 and in Wistar Han rats. D-Penicillamine had a protective effect against catecholamine-induced injury both in vitro and in vivo. It protected H9c2 cells against the catecholamine-induced viability loss in a dose-dependent manner. In animals, both intravenous D-penicillamine doses of 11 (low) and 44 mg/kg (high) decreased the mortality caused by s.c. isoprenaline (100 mg/kg) from 36% to 14% and 22%, respectively. However, whereas the low D-penicillamine dose decreased the release of cardiac troponin T (specific marker of myocardial injury), the high dose resulted in an increase. Interestingly, the high dose led to a marked elevation in plasma vitamin C. This might be related to potentiation of oxidative stress, as suggested by additional in vitro experiments with D-penicillamine (iron reduction and the Fenton reaction). In conclusion, D-penicillamine has protective potential against catecholamine-induced cardiotoxicity; however the optimal dose selection seems to be crucial for further application.
Zobrazit více v PubMed
Rubin J. B., Borden W. B. Coronary heart disease in young adults. Current Atherosclerosis Reports. 2012;14(2):140–149. doi: 10.1007/s11883-012-0226-3. PubMed DOI
Ibáñez B., Heusch G., Ovize M., Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. Journal of the American College of Cardiology. 2015;65(14):1454–1471. doi: 10.1016/j.jacc.2015.02.032. PubMed DOI
Berenshtein E., Vaisman B., Goldberg-Langerman C., Kitrossky N., Konijn A. M., Chevion M. Roles of ferritin and iron in ischemic preconditioning of the heart. Molecular and Cellular Biochemistry. 2002;234-235(1-2):283–292. doi: 10.1023/a:1015923202082. PubMed DOI
Chevion M., Jiang Y., Har-El R., Berenshtein E., Uretzky G., Kitrossky N. Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(3):1102–1106. doi: 10.1073/pnas.90.3.1102. PubMed DOI PMC
Mladěnka P., Kalinowski D. S., Hašková P., et al. The novel iron chelator, 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone, reduces catecholamine-mediated myocardial toxicity. Chemical Research in Toxicology. 2009;22(1):208–217. doi: 10.1021/tx800331j. PubMed DOI
Zatloukalová L., Filipský T., Mladěnka P., et al. Dexrazoxane provided moderate protection in a catecholamine model of severe cardiotoxicity. Canadian Journal of Physiology and Pharmacology. 2012;90(4):473–484. doi: 10.1139/y2012-009. PubMed DOI
Paraskevaidis I. A., Iliodromitis E. K., Vlahakos D., et al. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: immediate and long-term significance. European Heart Journal. 2005;26(3):263–270. doi: 10.1093/eurheartj/ehi028. PubMed DOI
Bolli R., Patel B. S., Zhu W.-X., et al. The iron chelator desferrioxamine attenuates postischemic ventricular dysfunction. American Journal of Physiology—Heart and Circulatory Physiology. 1987;253(6, part 2):H1372–H1380. PubMed
Tang W. H., Wu S., Wong T. M., Chung S. K., Chung S. S. M. Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radical Biology & Medicine. 2008;45(5):602–610. doi: 10.1016/j.freeradbiomed.2008.05.003. PubMed DOI
Grammer T. B., Kleber M. E., Silbernagel G., et al. Copper, ceruloplasmin, and long-term cardiovascular and total mortality (The Ludwigshafen Risk and Cardiovascular Health Study) Free Radical Research. 2014;48(6):706–715. doi: 10.3109/10715762.2014.901510. PubMed DOI
Vallee B. L. The time course of serum copper concentrations of patients with myocardial infarctions .1. Metabolism&Clinical and Experimental. 1952;1(5):420–434. PubMed
Appelbaum Y. J., Kuvin J., Borman J. B., Uretzky G., Chevion M. The protective role of neocuproine against cardiac damage in isolated perfused rat hearts. Free Radical Biology and Medicine. 1990;8(2):133–143. PubMed
Fieten H., Hugen S., van den Ingh T. S. G. A. M., et al. Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs. The Veterinary Journal. 2013;197(2):468–473. doi: 10.1016/j.tvjl.2013.03.003. PubMed DOI
Tran-Ho L.-C., May P. M., Hefter G. T. Complexation of copper(I) by thioamino acids. Implications for copper speciation in blood plasma. Journal of Inorganic Biochemistry. 1997;68(3):225–231. doi: 10.1016/s0162-0134(97)00097-4. PubMed DOI
Brewer G. J. Zinc and tetrathiomolybdate for the treatment of Wilson's disease and the potential efficacy of anticopper therapy in a wide variety of diseases. Metallomics. 2009;1(3):199–206. doi: 10.1039/b901614g. PubMed DOI
Aposhian H. V., Aposhian M. M. N-acetyl-DL-penicillamine, a new oral protective agent against the lethal effects of mercuric chloride. The Journal of Pharmacology and Experimental Therapeutics. 1959;126(2):131–135. PubMed
Mladěnka P., Macáková K., Zatloukalová L., et al. In vitro interactions of coumarins with iron. Biochimie. 2010;92(9):1108–1114. doi: 10.1016/j.biochi.2010.03.025. PubMed DOI
Nappi A. J., Vass E. Hydroxyl radical formation via iron-mediated Fenton chemistry is inhibited by methylated catechols. Biochimica et Biophysica Acta. 1998;1425(1):159–167. doi: 10.1016/s0304-4165(98)00062-2. PubMed DOI
Kimes B. W., Brandt B. L. Properties of a clonal muscle cell line from rat heart. Experimental Cell Research. 1976;98(2):367–381. doi: 10.1016/0014-4827(76)90447-X. PubMed DOI
Šimůnek T., Štěrba M., Popelová O., et al. Anthracycline toxicity to cardiomyocytes or cancer cells is differently affected by iron chelation with salicylaldehyde isonicotinoyl hydrazone. British Journal of Pharmacology. 2008;155(1):138–148. doi: 10.1038/bjp.2008.236. PubMed DOI PMC
Hašková P., Kovaříková P., Koubková L., Vávrová A., MacKová E., Šimůnek T. Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity. Free Radical Biology and Medicine. 2011;50(4):537–549. doi: 10.1016/j.freeradbiomed.2010.12.004. PubMed DOI
Repetto G., del Peso A., Zurita J. L. Neutral red uptake assay for the estimation of cell viability/ cytotoxicity. Nature Protocols. 2008;3(7):1125–1131. doi: 10.1038/nprot.2008.75. PubMed DOI
Vreman H. J., Wong R. J., Sanesi C. A., Dennery P. A., Stevenson D. K. Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Canadian Journal of Physiology and Pharmacology. 1998;76(12):1057–1065. doi: 10.1139/cjpp-76-12-1057. PubMed DOI
Kuchinskas E. J., Rosen Y. Metal chelates of dl-penicillamine. Archives of Biochemistry and Biophysics. 1962;97(2):370–372. doi: 10.1016/0003-9861(62)90090-5. PubMed DOI
Lenz G. R., Martell A. E. Metal chelates of some sulfur-containing amino acids. Biochemistry. 1964;3(6):745–750. doi: 10.1021/bi00894a001. PubMed DOI
Lu J. X., Combs G. F., Jr. Penicillamine: pharmacokinetics and differential effects on zinc and copper status in chicks. The Journal of Nutrition. 1992;122(2):355–362. PubMed
Mladěnka P., Hrdina R., Bobrovová Z., et al. Cardiac biomarkers in a model of acute catecholamine cardiotoxicity. Human & Experimental Toxicology. 2009;28(10):631–640. doi: 10.1177/0960327109350665. PubMed DOI
Ala A., Walker A. P., Ashkan K., Dooley J. S., Schilsky M. L. Wilson's disease. The Lancet. 2007;369(9559):397–408. doi: 10.1016/s0140-6736(07)60196-2. PubMed DOI
Ishak R., Abbas O. Penicillamine revisited: historic overview and review of the clinical uses and cutaneous adverse effects. American Journal of Clinical Dermatology. 2013;14(3):223–233. doi: 10.1007/s40257-013-0022-z. PubMed DOI
Říha M., Karlíčková J., Filipský T., Macáková K., Hrdina R., Mladěnka P. Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. Journal of Inorganic Biochemistry. 2013;123:80–87. doi: 10.1016/j.jinorgbio.2013.02.011. PubMed DOI
Doornbos D. A., Faber J. S. Studies on metal complexes of drugs; D-penicillamine and N-acetyl-D-penicillamine. Pharmaceutisch Weekblad. 1964;99:289–309. PubMed
Mladěnka P., Semecký V., Bobrovová Z., et al. The effects of lactoferrin in a rat model of catecholamine cardiotoxicity. Biometals. 2009;22(2):353–361. doi: 10.1007/s10534-008-9172-5. PubMed DOI
Mladěnka P., Zatloukalová L., Šimůnek T., et al. Direct administration of rutin does not protect against catecholamine cardiotoxicity. Toxicology. 2009;255(1-2):25–32. doi: 10.1016/j.tox.2008.09.027. PubMed DOI
Staite N. D., Messner R. P., Zoschke D. C. In vitro production and scavenging of hydrogen peroxide by D-penicillamine. Relationship to copper availability. Arthritis & Rheumatism. 1985;28(8):914–921. doi: 10.1002/art.1780280811. PubMed DOI
Starkebaum G., Root R. K. D-penicillamine: analysis of the mechanism of copper-catalyzed hydrogen peroxide generation. The Journal of Immunology. 1985;134(5):3371–3378. PubMed
Qiao S., Cabello C. M., Lamore S. D., Lesson J. L., Wondrak G. T. D-Penicillamine targets metastatic melanoma cells with induction of the unfolded protein response (UPR) and Noxa (PMAIP1)-dependent mitochondrial apoptosis. Apoptosis. 2012;17(10):1079–1094. doi: 10.1007/s10495-012-0746-x. PubMed DOI PMC
Grazyna G., Agata K., Adam P., et al. Treatment with D-penicillamine or zinc sulphate affects copper metabolism and improves but not normalizes antioxidant capacity parameters in Wilson disease. BioMetals. 2014;27(1):207–215. doi: 10.1007/s10534-013-9694-3. PubMed DOI PMC
Ambrosio G., Zweier J. L., Jacobus W. E., Weisfeldt M. L., Flaherty J. T. Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: the role of iron in the pathogenesis of reperfusion injury. Circulation. 1987;76(4):906–915. doi: 10.1161/01.cir.76.4.906. PubMed DOI
Gaetke L. M., Chow-Johnson H. S., Chow C. K. Copper: toxicological relevance and mechanisms. Archives of Toxicology. 2014;88(11):1929–1938. doi: 10.1007/s00204-014-1355-y. PubMed DOI PMC
Macáková K., Mladěnka P., Filipský T., et al. Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chemistry. 2012;135(4):2584–2592. doi: 10.1016/j.foodchem.2012.06.107. PubMed DOI
Lipsky P. E. Modulation of human antibody production in vitro by D-penicillamine and CuSO4: inhibition of helper T cell function. The Journal of Rheumatology. Supplement. 1981;7:69–73. PubMed
Frangogiannis N. G., Smith C. W., Entman M. L. The inflammatory response in myocardial infarction. Cardiovascular Research. 2002;53(1):31–47. doi: 10.1016/S0008-6363(01)00434-5. PubMed DOI
Comprehensive review of cardiovascular toxicity of drugs and related agents