Oxidation of Phe454 in the Gating Segment Inactivates Trametes multicolor Pyranose Oxidase during Substrate Turnover
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
W 1224
Austrian Science Fund FWF - Austria
PubMed
26828796
PubMed Central
PMC4735113
DOI
10.1371/journal.pone.0148108
PII: PONE-D-15-51426
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů MeSH
- fenylalanin metabolismus MeSH
- hmotnostní spektrometrie MeSH
- karbohydrátdehydrogenasy chemie metabolismus MeSH
- katalytická doména MeSH
- kinetika MeSH
- methionin metabolismus MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- oxidace-redukce MeSH
- peptidy chemie MeSH
- peroxid vodíku metabolismus MeSH
- sekvence aminokyselin MeSH
- stabilita enzymů MeSH
- substrátová specifita MeSH
- Trametes enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fenylalanin MeSH
- karbohydrátdehydrogenasy MeSH
- methionin MeSH
- peptidy MeSH
- peroxid vodíku MeSH
- pyranose oxidase MeSH Prohlížeč
The flavin-dependent enzyme pyranose oxidase catalyses the oxidation of several pyranose sugars at position C-2. In a second reaction step, oxygen is reduced to hydrogen peroxide. POx is of interest for biocatalytic carbohydrate oxidations, yet it was found that the enzyme is rapidly inactivated under turnover conditions. We studied pyranose oxidase from Trametes multicolor (TmPOx) inactivated either during glucose oxidation or by exogenous hydrogen peroxide using mass spectrometry. MALDI-MS experiments of proteolytic fragments of inactivated TmPOx showed several peptides with a mass increase of 16 or 32 Da indicating oxidation of certain amino acids. Most of these fragments contain at least one methionine residue, which most likely is oxidised by hydrogen peroxide. One peptide fragment that did not contain any amino acid residue that is likely to be oxidised by hydrogen peroxide (DAFSYGAVQQSIDSR) was studied in detail by LC-ESI-MS/MS, which showed a +16 Da mass increase for Phe454. We propose that oxidation of Phe454, which is located at the flexible active-site loop of TmPOx, is the first and main step in the inactivation of TmPOx by hydrogen peroxide. Oxidation of methionine residues might then further contribute to the complete inactivation of the enzyme.
Zobrazit více v PubMed
Giffhorn F. Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry. Appl Microbiol Biotechnol. 2000;54: 727–740. PubMed
Halada P, Leitner C, Sedmera P, Haltrich D, Volc J. Identification of the covalent flavin adenine dinucleotide-binding region in pyranose 2-oxidase from Trametes multicolor. Anal Biochem. 2003;314: 235–242. PubMed
Hallberg BM, Leitner C, Haltrich D, Divne C. Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase. J Mol Biol. 2004;341: 781–796. PubMed
Leitner C, Haltrich D, Nidetzky B, Prillinger H, Kulbe KD. Production of a novel pyranose 2-oxidase by basidiomycete Trametes multicolor. Appl Biochem Biotechnol. 1998;70–72: 237–248. PubMed
Leitner C, Hess J, Galhaup C, Ludwig R, Nidetzky B, Kulbe KD, et al. Purification and characterization of a laccase from the white-rot fungus Trametes multicolor. Appl Biochem Biotechnol. 2002;98–100: 497–507. PubMed
Ghisla S, Massey V. Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem. 1989;181: 1–17. PubMed
Prongjit M, Sucharitakul J, Wongnate T, Haltrich D, Chaiyen P. Kinetic mechanism of pyranose 2-oxidase from Trametes multicolor. Biochemistry. 2009;48: 4170–4180. 10.1021/bi802331r PubMed DOI
Brugger D, Krondorfer I, Zahma K, Stoisser T, Bolivar JM, Nidetzky B, et al. Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes. Biotechnol J. 2014;9: 474–482. 10.1002/biot.201300336 PubMed DOI PMC
Leitner C, Volc J, Haltrich D. Purification and characterization of pyranose oxidase from the white-rot fungus Trametes multicolor. Appl Environ Microbiol. 2001;67: 3636–3644. PubMed PMC
Pisanelli I, Kujawa M, Spadiut O, Kittl R, Halada P, Volc J, et al. Pyranose 2-oxidase from Phanerochaete chrysosporium—expression in E. coli and biochemical characterization. J Biotechnol. 2009;142: 97–106. 10.1016/j.jbiotec.2009.03.019 PubMed DOI
Kujawa M, Ebner H, Leitner C, Hallberg BM, Prongjit M, Sucharitakul J, et al. Structural basis for substrate binding and regioselective oxidation of monosaccharides at C3 by pyranose 2-oxidase. J Biol Chem. 2006;281: 35104–35115. PubMed
Spadiut O, Tan TC, Pisanelli I, Haltrich D, Divne C. Importance of the gating segment in the substrate-recognition loop of pyranose 2-oxidase. FEBS J. 2010;277: 2892–2909. 10.1111/j.1742-4658.2010.07705.x PubMed DOI
Sucharitakul J, Prongjit M, Haltrich D, Chaiyen P. Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase. Biochemistry. 2008;47: 8485–8490. 10.1021/bi801039d PubMed DOI
Wongnate T, Chaiyen P. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily. FEBS J. 2013;280: 3009–3027. 10.1111/febs.12280 PubMed DOI
Giffhorn F, Köpper S, Huwig A, Freimund S. Rare sugars and sugar-based synthons by chemo-enzymatic synthesis. Enzyme Microb Technol. 2000;27: 734–742. PubMed
Schneider K, Dorscheid S, Witte K, Giffhorn F, Heinzle E. Controlled feeding of hydrogen peroxide as oxygen source improves production of 5-ketofructose from L-sorbose using engineered pyranose 2-oxidase from Peniophora gigantea. Biotechnol Bioeng. 2012;109: 2941–2945. 10.1002/bit.24572 PubMed DOI
Kwon KY, Kim JY, Youn J, Jeon C, Lee J, Hyeon T, et al. Electrochemical activity studies of glucose oxidase (GOx)-based and pyranose oxidase (POx)-based electrodes in mesoporous carbon: Toward biosensor and biofuel cell applications. Electroanalysis. 2014;26: 2075–2079.
Spadiut O, Brugger D, Coman V, Haltrich D, Gorton L. Engineered pyranose 2-oxidase: Efficiently turning sugars into electrical energy. Electroanalysis. 2010;22: 813–820.
Tasca F, Timur S, Ludwig R, Haltrich D, Volc J, Antiochia R, et al. Amperometric biosensors for detection of sugars based on the electrical wiring of different pyranose oxidases and pyranose dehydrogenases with osmium redox polymers on graphite electrodes. Electroanalysis. 2007;19: 294–302.
Decamps K, Joye I, Haltrich D, Nicolas J, Courtin C, Delcour J. Biochemical characteristics of Trametes multicolor pyranose oxidase and Aspergillus niger glucose oxidase and implications for their functionality in wheat flour dough. Food Chem. 2012;131: 1485–1492.
Swoboda M, Henig J, Cheng HM, Brugger D, Haltrich D, Plumere N, et al. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano. 2012;6: 6364–6369. 10.1021/nn301895c PubMed DOI PMC
Leitner C, Neuhauser W, Volc J, Kulbe KD, Nidetzky B, Haltrich D. The Cetus process revisited: a novel enzymatic alternative for the production of aldose-free D-fructose. Biocatal Biotrans. 1998;16: 365–382.
Maria G, Ene MD, Jipa I. Modelling enzymatic oxidation of D-glucose with pyranose 2-oxidase in the presence of catalase. J Mol Catal B-Enzym. 2012;74: 209–218.
Treitz G, Maria G, Giffhorn F, Heinzle E. Kinetic model discrimination via step-by-step experimental and computational procedure in the enzymatic oxidation of D-glucose. J Biotechnol. 2001;85: 271–287. PubMed
Spadiut O, Radakovits K, Pisanelli I, Salaheddin C, Yamabhai M, Tan TC, et al. A thermostable triple mutant of pyranose 2-oxidase from Trametes multicolor with improved properties for biotechnological applications. Biotechnol J. 2009;4: 525–534. 10.1002/biot.200800260 PubMed DOI
Spadiut O, Leitner C, Salaheddin C, Varga B, Vertessy BG, Tan TC, et al. Improving thermostability and catalytic activity of pyranose 2-oxidase from Trametes multicolor by rational and semi-rational design. FEBS J. 2009;276: 776–792. 10.1111/j.1742-4658.2008.06823.x PubMed DOI
Savige WE, Fontana A. Interconversion of methionine and methionine sulfoxide. Methods Enzymol. 1977;47: 453–459. PubMed
Li SH, Schöneich C, Borchardt RT. Chemical instability of protein pharmaceuticals: Mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng. 1995;48: 490–500. PubMed
Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27: 544–575. 10.1007/s11095-009-0045-6 PubMed DOI
Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Ann Rev Biochem. 1993;62: 797–821. PubMed
Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 2003;25: 207–218. PubMed
Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, et al. Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci. 2011;68: 2067–2079. 10.1007/s00018-011-0682-x PubMed DOI PMC
Chaiyen P, Fraaije MW, Mattevi A. The enigmatic reaction of flavins with oxygen. Trends Biochem Sci. 2012;37: 373–380. 10.1016/j.tibs.2012.06.005 PubMed DOI