• This record comes from PubMed

The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity

. 2016 Feb 11 ; 48 () : 12. [epub] 20160211

Language English Country France Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 26867760
PubMed Central PMC4751722
DOI 10.1186/s12711-016-0194-0
PII: 10.1186/s12711-016-0194-0
Knihovny.cz E-resources

BACKGROUND: One of the five basal actinopterygian lineages, the Chondrostei, including sturgeon, shovelnose, and paddlefish (Order Acipenseriformes) show extraordinary ploidy diversity associated with three rounds of lineage-specific whole-genome duplication, resulting in three levels of ploidy in sturgeon. Recently, incidence of spontaneous polyploidization has been reported among cultured sturgeon and it could have serious negative implications for the economics of sturgeon farming. We report the occurrence of seven spontaneous heptaploid (7n) Siberian sturgeon Acipenser baerii, which is a functional tetraploid species (4n) with ~245 chromosomes. Our aims were to assess ploidy level and chromosome number of the analysed specimens and to identify the possible mechanism that underlies the occurrence of spontaneous additional chromosome sets in their genome. RESULTS: Among 150 specimens resulting from the mating of a tetraploid (4n) A. baerii (~245 chromosomes) dam with a hexaploid (6n) A. baerii (~368 chromosomes) sire, 143 displayed a relative DNA content that corresponds to pentaploidy (5n) with an absolute DNA content of 8.98 ± 0.03 pg DNA per nucleus and nuclear area of 35.3 ± 4.3 μm(2) and seven specimens exhibited a relative DNA content that corresponds to heptaploidy (7n), with an absolute DNA content of 15.02 ± 0.04 pg DNA per nucleus and nuclear area of 48.4 ± 5.1 μm(2). Chromosome analyses confirmed a modal number of ~437 chromosomes in these heptaploid (7n) individuals. DNA genotyping of eight microsatellite loci followed by parental assignment confirmed spontaneous duplication of the maternal chromosome sets via retention of the second polar body in meiosis II as the mechanism for the formation of this unusual chromosome number and ploidy level in a functional tetraploid A. baerii. CONCLUSIONS: We report the second highest chromosome count among vertebrates in cultured sturgeon (~437) after the schizothoracine cyprinid Ptychobarbus dipogon with ~446 chromosomes. The finding also represents the highest documented chromosome count in Acipenseriformes, and the first report of a functional heptaploid (7n) genome composition in sturgeon. To our knowledge, this study provides the first clear evidence of a maternal origin for spontaneous polyploidization in cultured A. baerii. To date, all available data indicate that spontaneous polyploidization occurs frequently among cultured sturgeons.

See more in PubMed

Ohno S. Evolution by gene duplication. Berlin: Springer; 1970.

Lynch M. Genomics. Gene duplication and evolution. Science. 2002;297:945–947. doi: 10.1126/science.1075472. PubMed DOI

McLysaght A, Hokamp K, Wolfe KH. Extensive genomic duplication during early chordate evolution. Nat Genet. 2002;31:200–204. doi: 10.1038/ng884. PubMed DOI

Ventakhesh B. Evolution and diversity of fish genomes. Curr Opin Genet Dev. 2003;13:588–592. doi: 10.1016/j.gde.2003.09.001. PubMed DOI

Hoegg S, Brinkmann H, Taylor JS, Meyer A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol. 2004;59:190–203. doi: 10.1007/s00239-004-2613-z. PubMed DOI

Braasch I, Postlethwait JH. Polyploidy in fish and the teleost genome duplication. In: Soltis PS, Soltis DE, editors. Polyploidy and genome evolution. Berlin: Springer; 2012. pp. 341–383.

Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis. J Zool. 2011;284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x. DOI

Yang L, Sado T, Vincent Hirt M, Pasco-Viel E, Arunachalam M, Li J, et al. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes) Mol Phylogenet Evol. 2015;85:97–116. doi: 10.1016/j.ympev.2015.01.014. PubMed DOI

Peng Z, Ludwig A, Wang D, Diogo R, Wei Q, He S. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes) Mol Phylogenet Evol. 2007;42:854–862. doi: 10.1016/j.ympev.2006.09.008. PubMed DOI

Fontana F. A cytogenetic approach to the study of taxonomy and evolution in sturgeons. J Appl Ichthyol. 2002;18:226–233. doi: 10.1046/j.1439-0426.2002.00360.x. DOI

Havelka M, Kašpar V, Hulák M, Flajšhans M. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool. 2011;60:93–103.

Birstein VJ, Poletaev AI, Goncharov BF. The DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry. 1993;14:337–383. doi: 10.1002/cyto.990140406. PubMed DOI

Hardie DC, Hebert PD. The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome. 2003;46:683–706. doi: 10.1139/g03-040. PubMed DOI

Zhou H, Fujimoto T, Adachi S, Yamaha E, Arai K. Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J Appl Ichthyol. 2011;27:484–491. doi: 10.1111/j.1439-0426.2010.01648.x. DOI

Bytyutskyy D, Srp J, Flajšhans M. Use of Feulgen image analysis densitometry to study the effect of genome size on nuclear size in polyploid sturgeons. J Appl Ichthyol. 2012;28:704–708. doi: 10.1111/j.1439-0426.2012.02021.x. DOI

Gregory TR. Genome size evolution in animals. In: Gregory TR, editor. The evolution of the genome. San Diego: Elsevier; 2005. pp. 3–87.

Bytyutskyy D, Kholodnyy V, Flajšhans M. 3-D structure, volume, and DNA content of erythrocyte nuclei of polyploid fish. Cell Biol Int. 2014;38:708–715. doi: 10.1002/cbin.10247. PubMed DOI

Birstein VI, Hanner R, DeSalle R. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fish. 1997;48:127–155. doi: 10.1023/A:1007366100353. DOI

Fontana F, Zane L, Pepe A, Congiu L. Polyploidy in Acipenseriformes: cytogenetic and molecular approaches. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG, editors. Fish cytogenetics. Enfield: Science Publisher; 2007. pp. 385–403.

Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon. (Acipenser, Huso and Scaphirhynchus) Genetics. 2001;158:1203–1215. PubMed PMC

Havelka M, Hulák M, Bailie DA, Prodöhl PA, Flajšhans M. Extensive genome duplication in sturgeons: new evidence from microsatellite data. J Appl Ichthyol. 2013;29:704–708. doi: 10.1111/jai.12224. DOI

Gorshkova G, Gorshkov S, Gordin H, Knibb W. Karyological study in hybrids of Beluga, Huso huso (L.) and the Russian sturgeon Acipenser gueldenstaedtii Brandt. Israel J Aquacult. 1996;48:35–39.

Vasil’eva ED, Vasil’ev VP, Ponomareva EN, Lapukhin YA. Triple hybrids obtained by artificial hybridization of the Russian sturgeon Acipenser gueldenstaedtii with the hybrid of the starred sturgeon A. stellatus and the great sturgeon A. huso (Acipenseridae): the kind of inheritance of some morphological characters and fertility of the parental hybrid form. J Ichthyol. 2010;50:605–617. doi: 10.1134/S0032945210080059. DOI

Bronzi P, Rosenthal H, Gessner J. Global sturgeon aquaculture production: an overview. J Appl Ichthyol. 2011;27:169–175. doi: 10.1111/j.1439-0426.2011.01757.x. DOI

Bronzi P, Rosenthal H. Present and future sturgeon and caviar production and marketing: a global market overview. J Appl Ichthyol. 2014;30:1536–1546. doi: 10.1111/jai.12628. DOI

Omoto N, Maebayashi M, Adachi S, Arai K, Yamauchi K. The influence of oocyte maturational stage on hatching and triploidy rates in hybrid (bester) sturgeon, Huso huso × Acipenser ruthenus. Aquaculture. 2005;245:287–294. doi: 10.1016/j.aquaculture.2004.11.008. DOI

Drauch Schreier A, Gille D, Mahardja B, May B. Neutral markers confirm the octaploid origin reveal spontaneous autopolyploidy in white sturgeon, Acipenser transmontanus. J Appl Ichthyol. 2011;27:24–33. doi: 10.1111/j.1439-0426.2011.01873.x. DOI

Zhou H, Fujimoto T, Adachi S, Abe S, Yamaha E, Arai K. Molecular cytogenetic study on the ploidy status in Acipenser mikadoi. J Appl Ichtyol. 2013;29:51–55. doi: 10.1111/jai.12109. DOI

Schreier AD, May B, Gille DA. Incidence of spontaneous autopolyploidy in cultured populations of white sturgeon Acipenser transmontanus. Aquaculture. 2013;416–417:141–145. doi: 10.1016/j.aquaculture.2013.09.012. DOI

Havelka M, Hulák M, Rodina M, Flajšhans M. First evidence of autotriploidization in sterlet (Acipenser ruthenus) J Appl Genet. 2013;54:201–207. doi: 10.1007/s13353-013-0143-3. PubMed DOI

Havelka M, Hulák M, Ráb P, Rábová M, Lieckfeldt D, Ludwig A, et al. Fertility of a spontaneous triploid Siberian sturgeon, Acipenser baerii. BMC Genet. 2014;15:5. doi: 10.1186/1471-2156-15-5. PubMed DOI PMC

Gille DA, Famula TR, May B, Schreier AD. Evidence for a maternal origin of spontaneous autopolyploidy in cultured white sturgeon (Acipenser transmontanus) Aquaculture. 2015;435:467–474. doi: 10.1016/j.aquaculture.2014.10.002. DOI

Swan AA, Kinghorn BP. Evaluation and exploitation of crossbreeding in dairy cattle. J Dairy Sci. 1992;75:624–639. doi: 10.3168/jds.S0022-0302(92)77800-X. DOI

Mirkena T, Duguma G, Haile A, Tibbo M, Okeyo A, Wurzinger M, et al. Genetics of adaptation in domestic farm animals: a review. Livest Sci. 2010;132:1–12. doi: 10.1016/j.livsci.2010.05.003. DOI

Zhang X, Wu W, Li L, Ma X, Chen J. Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet Sel Evol. 2013;45:21. doi: 10.1186/1297-9686-45-21. PubMed DOI PMC

Wei QW, Zou Y, Li P, Li L. Sturgeon aquaculture in China: progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009) J Appl Ichthyol. 2011;27:162–168. doi: 10.1111/j.1439-0426.2011.01669.x. DOI

Pravda D, Svobodova Z. Haematology of fishes. Vet Haematol. 2003;268:381–397.

Hardie DC, Gregory TR, Hebert PD. From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem. 2002;50:735–749. doi: 10.1177/002215540205000601. PubMed DOI

Bytyutskyy D, Flajšhans M. Use of diploid and triploid tench (Tinca tinca) blood as standards for genome size measurements. J Appl Ichthyol. 2014;30:12–14. doi: 10.1111/jai.12422. DOI

Fujiwara A, Nishida-Umehara C, Sakamoto T, Okamoto N, Nakayama I, Abe S. Improved fish lymphocyte culture for chromosome preparation. Genetica. 2001;111:77–89. doi: 10.1023/A:1013788626712. PubMed DOI

Börk K, Drauch A, Israel JA, Pedroia J, Rodzen J, May B. Development of new microsatellite primers for green sturgeon and white sturgeon. Conserv Genet. 2008;9:973–979. doi: 10.1007/s10592-007-9417-9. DOI

Krueger CC, May B, Kincaid HL. Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci. 1997;54:1542–1547. doi: 10.1139/f97-061. DOI

Welsh AB, Blumberg M, May B. Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol Ecol Notes. 2003;3:47–55. doi: 10.1046/j.1471-8286.2003.00346.x. DOI

King TL, Lubinski BA, Spidle AP. Microsatellite DNA variation in Atlantic sturgeon Acipenser oxyrinchus oxyrinchus: and cross-species amplification in the Acipenseridae. Conserv Genet. 2001;2:103–119. doi: 10.1023/A:1011895429669. DOI

McQuown EC, Sloss BL, Sheehan RJ, Rodzen J, Tranah GJ, May B. Microsatellite analysis of genetic variation in sturgeon (Acipenseridae): new primer sequences for Scaphirhynchus and Acipenser. Trans Am Fish Soc. 2000;129:1380–1388. doi: 10.1577/1548-8659(2000)129<1380:MAOGVI>2.0.CO;2. DOI

StatSoft Inc. STATISTICA (data analysis software system), version 12; 2012. www.statsoft.com.

Yu XY, Yu XJ. A schizothoracin fish species, Diptychus dipogon, with very high number of chromosomes. Chrom Inform Serv. 1990;48:17–18.

Otto SP, Whitton J. Polyploidy: incidence and evolution. Annu Rev Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. PubMed DOI

Mason AS, Pires JCH. Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet. 2015;31:5–10. doi: 10.1016/j.tig.2014.09.011. PubMed DOI

Dettlaff TA, Ginsburg AS, Schmalhausen OI. Sturgeon fishes. Developmental biology and aquaculture. Berlin: Springer; 1993.

Kobayasi H. A cytological study on the maturation division in the oogenic process of the triploid ginbuta (Carassius auratus langsdorfii) Jpn J Ichthyol. 1976;76:234–240.

Yamashita M, Jiang J, Onozato H, Nakanishi T, Nagahama Y. A tripolar spindle formed at meiosis I assures the retention of the original ploidy in the gynogenetic triploid crucian carp, Ginbuna Carassius auratus langsdorfii. Dev Growth Differ. 1993;35:631–636. doi: 10.1111/j.1440-169X.1993.00631.x. PubMed DOI

Shimizu Y, Shibata N, Sakaizumi M, Yamashita M. Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. curvinotus. Zool Sci. 2000;17:951–958. doi: 10.2108/zsj.17.951. DOI

Arai K, Fujimoto T. Genomic constitution and atypical reproduction in polyploidy and unisexual lineages of the Misgurnus loach, a teleost fish. Cytogenet Genome Res. 2013;140:226–240. doi: 10.1159/000353301. PubMed DOI

Leggatt RA, Iwama GK. Occurrence of polyploidy in the fishes. Rev Fish Biol Fisher. 2003;13:237–246. doi: 10.1023/B:RFBF.0000033049.00668.fe. DOI

Aegerter S, Jalabert B. Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2004;231:59–71. doi: 10.1016/j.aquaculture.2003.08.019. DOI

Flajshans M, Kvasnicka P, Rab P. Genetic studies in tench (Tinca tinca)—high incidence spontaneous triploidy. Aquaculture. 1993;110:243–248. doi: 10.1016/0044-8486(93)90372-6. DOI

Flajshans M, Kohlmann K, Rab P. Autotriploid tench Tinca tinca (L.) larvae obtained by fertilization of eggs previously subjected to postovulatory ageing in vitro and in vivo. J Fish Biol. 2007;71:868–876. doi: 10.1111/j.1095-8649.2007.01557.x. DOI

Nomura K, Takeda Y, Unuma T, Morishima K, Tanaka H, Arai K, et al. Post-ovulatory oocyte aging induces spontaneous occurrence of polyploids and mosaics in artificial fertilization of Japanese eel, Anguilla japonica. Aquaculture. 2013;404–405:15–21. doi: 10.1016/j.aquaculture.2013.04.016. DOI

Devlin RH, Sakhrani D, Biagi CA, Eom KW. Occurrence of incomplete paternal-chromosome retention in GH-transgenic coho salmon being assessed for reproductive containment by pressure-shock-induced triploidy. Aquaculture. 2010;304:66–78. doi: 10.1016/j.aquaculture.2010.03.023. DOI

Varkonyi E, Bercsenyi M, Ozouf-Costaz C, Billard R. Chromosomal and morphological abnormalities caused by oocyte aging in Silurus glanis. J Fish Biol. 1998;52:899–906.

Glover KA, Madhun AS, Dahle G, Sørvik AG, Wennevik V, Skaala Ø, et al. The frequency of spontaneous triploidy in farmed Atlantic salmon produced in Norway during the period 2007–2014. BMC Genet. 2015;16:37. doi: 10.1186/s12863-015-0193-0. PubMed DOI PMC

Piferrer F, Beaumont A, Falguiere JC, Flajšhans M, Haffray P, Colombo L. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;239:125–156. doi: 10.1016/j.aquaculture.2009.04.036. DOI

Cuellar O, Uyeno T. Triploidy in rainbow trout. Cytogenetics. 1972;11:508–515. doi: 10.1159/000130217. PubMed DOI

Thorgaard GH, Gall GAE. Adult triploids in a rainbow trout family. Genetics. 1979;93:961–973. PubMed PMC

Cherfas NB, Rothbard S, Hulata G, Kozinsky O. Spontaneous diploidization of maternal chromosome set in ornamental (koi) carp, Cyprinus carpio L. J Appl Ichthyol. 1991;7:72–77. doi: 10.1111/j.1439-0426.1991.tb00512.x. DOI

Cherfas NB, Gomelsky B, Ben-Dom N, Hulata G. Evidence for the heritable nature of spontaneous diploidization in common carp Cyprinus carpio L. eggs. Aquacult Res. 1995;26:289–292. doi: 10.1111/j.1365-2109.1995.tb00914.x. DOI

Itono M, Morishima K, Fujimoto T, Bando E, Yamaha E, Arai K. Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae) J Exp Zool A Comp Exp Biol. 2006;305:513–523. doi: 10.1002/jez.a.283. PubMed DOI

Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6:836–846. doi: 10.1038/nrg1711. PubMed DOI

Lewis WH. Polyploidy in species populations. In: Lewis WH, editor. Polyploidy: biological relevance. New York: Plenum Press; 1980. pp. 103–192.

Schmid M, Evans BJ, Bogart JP. Polyploidy in Amphibia. Cytogenet Genome Res. 2015;145:315–330. doi: 10.1159/000431388. PubMed DOI

Krieger J, Fuerst PA. Evidence for a slowed rate of molecular evolution in the order Acipenseriformes. Mol Biol Evol. 2002;2002(19):891–897. doi: 10.1093/oxfordjournals.molbev.a004146. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Examination of white blood cell indicators for three different ploidy level sturgeon species reared in an indoor recirculation aquaculture system for one year

. 2022 Mar ; 67 (3) : 138-149. [epub] 20220106

Efficient CRISPR Mutagenesis in Sturgeon Demonstrates Its Utility in Large, Slow-Maturing Vertebrates

. 2022 ; 10 () : 750833. [epub] 20220210

Simple Field Storage of Fish Samples for Measurement of DNA Content by Flow Cytometry

. 2021 Jul ; 99 (7) : 743-752. [epub] 20201130

Ancient Sturgeons Possess Effective DNA Repair Mechanisms: Influence of Model Genotoxicants on Embryo Development of Sterlet, Acipenser ruthenus

. 2020 Dec 22 ; 22 (1) : . [epub] 20201222

Artificial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates

. 2020 Nov 12 ; 10 (1) : 19705. [epub] 20201112

Ploidy Levels and Fitness-Related Traits in Purebreds and Hybrids Originating from Sterlet (Acipenser ruthenus) and Unusual Ploidy Levels of Siberian Sturgeon (A. baerii)

. 2020 Oct 02 ; 11 (10) : . [epub] 20201002

Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics

. 2018 Feb 14 ; 9 (2) : . [epub] 20180214

Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula)

. 2017 Mar 02 ; 18 (1) : 19. [epub] 20170302

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...