The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity
Language English Country France Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26867760
PubMed Central
PMC4751722
DOI
10.1186/s12711-016-0194-0
PII: 10.1186/s12711-016-0194-0
Knihovny.cz E-resources
- MeSH
- Cell Nucleus genetics MeSH
- Chromosomes genetics MeSH
- DNA analysis MeSH
- Fertility genetics MeSH
- Genome * MeSH
- Genotype MeSH
- Hybridization, Genetic * MeSH
- Meiosis genetics MeSH
- Microsatellite Repeats genetics MeSH
- Ploidies * MeSH
- Fishes genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
BACKGROUND: One of the five basal actinopterygian lineages, the Chondrostei, including sturgeon, shovelnose, and paddlefish (Order Acipenseriformes) show extraordinary ploidy diversity associated with three rounds of lineage-specific whole-genome duplication, resulting in three levels of ploidy in sturgeon. Recently, incidence of spontaneous polyploidization has been reported among cultured sturgeon and it could have serious negative implications for the economics of sturgeon farming. We report the occurrence of seven spontaneous heptaploid (7n) Siberian sturgeon Acipenser baerii, which is a functional tetraploid species (4n) with ~245 chromosomes. Our aims were to assess ploidy level and chromosome number of the analysed specimens and to identify the possible mechanism that underlies the occurrence of spontaneous additional chromosome sets in their genome. RESULTS: Among 150 specimens resulting from the mating of a tetraploid (4n) A. baerii (~245 chromosomes) dam with a hexaploid (6n) A. baerii (~368 chromosomes) sire, 143 displayed a relative DNA content that corresponds to pentaploidy (5n) with an absolute DNA content of 8.98 ± 0.03 pg DNA per nucleus and nuclear area of 35.3 ± 4.3 μm(2) and seven specimens exhibited a relative DNA content that corresponds to heptaploidy (7n), with an absolute DNA content of 15.02 ± 0.04 pg DNA per nucleus and nuclear area of 48.4 ± 5.1 μm(2). Chromosome analyses confirmed a modal number of ~437 chromosomes in these heptaploid (7n) individuals. DNA genotyping of eight microsatellite loci followed by parental assignment confirmed spontaneous duplication of the maternal chromosome sets via retention of the second polar body in meiosis II as the mechanism for the formation of this unusual chromosome number and ploidy level in a functional tetraploid A. baerii. CONCLUSIONS: We report the second highest chromosome count among vertebrates in cultured sturgeon (~437) after the schizothoracine cyprinid Ptychobarbus dipogon with ~446 chromosomes. The finding also represents the highest documented chromosome count in Acipenseriformes, and the first report of a functional heptaploid (7n) genome composition in sturgeon. To our knowledge, this study provides the first clear evidence of a maternal origin for spontaneous polyploidization in cultured A. baerii. To date, all available data indicate that spontaneous polyploidization occurs frequently among cultured sturgeons.
Faculty of Fisheries Sciences Hokkaido University 3 1 1 Minato Hakodate Hokkaido 041 8611 Japan
Research Institute for Limnology University of Innsbruck Mondseestraße 9 5310 Mondsee Austria
See more in PubMed
Ohno S. Evolution by gene duplication. Berlin: Springer; 1970.
Lynch M. Genomics. Gene duplication and evolution. Science. 2002;297:945–947. doi: 10.1126/science.1075472. PubMed DOI
McLysaght A, Hokamp K, Wolfe KH. Extensive genomic duplication during early chordate evolution. Nat Genet. 2002;31:200–204. doi: 10.1038/ng884. PubMed DOI
Ventakhesh B. Evolution and diversity of fish genomes. Curr Opin Genet Dev. 2003;13:588–592. doi: 10.1016/j.gde.2003.09.001. PubMed DOI
Hoegg S, Brinkmann H, Taylor JS, Meyer A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol. 2004;59:190–203. doi: 10.1007/s00239-004-2613-z. PubMed DOI
Braasch I, Postlethwait JH. Polyploidy in fish and the teleost genome duplication. In: Soltis PS, Soltis DE, editors. Polyploidy and genome evolution. Berlin: Springer; 2012. pp. 341–383.
Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis. J Zool. 2011;284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x. DOI
Yang L, Sado T, Vincent Hirt M, Pasco-Viel E, Arunachalam M, Li J, et al. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes) Mol Phylogenet Evol. 2015;85:97–116. doi: 10.1016/j.ympev.2015.01.014. PubMed DOI
Peng Z, Ludwig A, Wang D, Diogo R, Wei Q, He S. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes) Mol Phylogenet Evol. 2007;42:854–862. doi: 10.1016/j.ympev.2006.09.008. PubMed DOI
Fontana F. A cytogenetic approach to the study of taxonomy and evolution in sturgeons. J Appl Ichthyol. 2002;18:226–233. doi: 10.1046/j.1439-0426.2002.00360.x. DOI
Havelka M, Kašpar V, Hulák M, Flajšhans M. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool. 2011;60:93–103.
Birstein VJ, Poletaev AI, Goncharov BF. The DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry. 1993;14:337–383. doi: 10.1002/cyto.990140406. PubMed DOI
Hardie DC, Hebert PD. The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome. 2003;46:683–706. doi: 10.1139/g03-040. PubMed DOI
Zhou H, Fujimoto T, Adachi S, Yamaha E, Arai K. Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J Appl Ichthyol. 2011;27:484–491. doi: 10.1111/j.1439-0426.2010.01648.x. DOI
Bytyutskyy D, Srp J, Flajšhans M. Use of Feulgen image analysis densitometry to study the effect of genome size on nuclear size in polyploid sturgeons. J Appl Ichthyol. 2012;28:704–708. doi: 10.1111/j.1439-0426.2012.02021.x. DOI
Gregory TR. Genome size evolution in animals. In: Gregory TR, editor. The evolution of the genome. San Diego: Elsevier; 2005. pp. 3–87.
Bytyutskyy D, Kholodnyy V, Flajšhans M. 3-D structure, volume, and DNA content of erythrocyte nuclei of polyploid fish. Cell Biol Int. 2014;38:708–715. doi: 10.1002/cbin.10247. PubMed DOI
Birstein VI, Hanner R, DeSalle R. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fish. 1997;48:127–155. doi: 10.1023/A:1007366100353. DOI
Fontana F, Zane L, Pepe A, Congiu L. Polyploidy in Acipenseriformes: cytogenetic and molecular approaches. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG, editors. Fish cytogenetics. Enfield: Science Publisher; 2007. pp. 385–403.
Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon. (Acipenser, Huso and Scaphirhynchus) Genetics. 2001;158:1203–1215. PubMed PMC
Havelka M, Hulák M, Bailie DA, Prodöhl PA, Flajšhans M. Extensive genome duplication in sturgeons: new evidence from microsatellite data. J Appl Ichthyol. 2013;29:704–708. doi: 10.1111/jai.12224. DOI
Gorshkova G, Gorshkov S, Gordin H, Knibb W. Karyological study in hybrids of Beluga, Huso huso (L.) and the Russian sturgeon Acipenser gueldenstaedtii Brandt. Israel J Aquacult. 1996;48:35–39.
Vasil’eva ED, Vasil’ev VP, Ponomareva EN, Lapukhin YA. Triple hybrids obtained by artificial hybridization of the Russian sturgeon Acipenser gueldenstaedtii with the hybrid of the starred sturgeon A. stellatus and the great sturgeon A. huso (Acipenseridae): the kind of inheritance of some morphological characters and fertility of the parental hybrid form. J Ichthyol. 2010;50:605–617. doi: 10.1134/S0032945210080059. DOI
Bronzi P, Rosenthal H, Gessner J. Global sturgeon aquaculture production: an overview. J Appl Ichthyol. 2011;27:169–175. doi: 10.1111/j.1439-0426.2011.01757.x. DOI
Bronzi P, Rosenthal H. Present and future sturgeon and caviar production and marketing: a global market overview. J Appl Ichthyol. 2014;30:1536–1546. doi: 10.1111/jai.12628. DOI
Omoto N, Maebayashi M, Adachi S, Arai K, Yamauchi K. The influence of oocyte maturational stage on hatching and triploidy rates in hybrid (bester) sturgeon, Huso huso × Acipenser ruthenus. Aquaculture. 2005;245:287–294. doi: 10.1016/j.aquaculture.2004.11.008. DOI
Drauch Schreier A, Gille D, Mahardja B, May B. Neutral markers confirm the octaploid origin reveal spontaneous autopolyploidy in white sturgeon, Acipenser transmontanus. J Appl Ichthyol. 2011;27:24–33. doi: 10.1111/j.1439-0426.2011.01873.x. DOI
Zhou H, Fujimoto T, Adachi S, Abe S, Yamaha E, Arai K. Molecular cytogenetic study on the ploidy status in Acipenser mikadoi. J Appl Ichtyol. 2013;29:51–55. doi: 10.1111/jai.12109. DOI
Schreier AD, May B, Gille DA. Incidence of spontaneous autopolyploidy in cultured populations of white sturgeon Acipenser transmontanus. Aquaculture. 2013;416–417:141–145. doi: 10.1016/j.aquaculture.2013.09.012. DOI
Havelka M, Hulák M, Rodina M, Flajšhans M. First evidence of autotriploidization in sterlet (Acipenser ruthenus) J Appl Genet. 2013;54:201–207. doi: 10.1007/s13353-013-0143-3. PubMed DOI
Havelka M, Hulák M, Ráb P, Rábová M, Lieckfeldt D, Ludwig A, et al. Fertility of a spontaneous triploid Siberian sturgeon, Acipenser baerii. BMC Genet. 2014;15:5. doi: 10.1186/1471-2156-15-5. PubMed DOI PMC
Gille DA, Famula TR, May B, Schreier AD. Evidence for a maternal origin of spontaneous autopolyploidy in cultured white sturgeon (Acipenser transmontanus) Aquaculture. 2015;435:467–474. doi: 10.1016/j.aquaculture.2014.10.002. DOI
Swan AA, Kinghorn BP. Evaluation and exploitation of crossbreeding in dairy cattle. J Dairy Sci. 1992;75:624–639. doi: 10.3168/jds.S0022-0302(92)77800-X. DOI
Mirkena T, Duguma G, Haile A, Tibbo M, Okeyo A, Wurzinger M, et al. Genetics of adaptation in domestic farm animals: a review. Livest Sci. 2010;132:1–12. doi: 10.1016/j.livsci.2010.05.003. DOI
Zhang X, Wu W, Li L, Ma X, Chen J. Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet Sel Evol. 2013;45:21. doi: 10.1186/1297-9686-45-21. PubMed DOI PMC
Wei QW, Zou Y, Li P, Li L. Sturgeon aquaculture in China: progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009) J Appl Ichthyol. 2011;27:162–168. doi: 10.1111/j.1439-0426.2011.01669.x. DOI
Pravda D, Svobodova Z. Haematology of fishes. Vet Haematol. 2003;268:381–397.
Hardie DC, Gregory TR, Hebert PD. From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem. 2002;50:735–749. doi: 10.1177/002215540205000601. PubMed DOI
Bytyutskyy D, Flajšhans M. Use of diploid and triploid tench (Tinca tinca) blood as standards for genome size measurements. J Appl Ichthyol. 2014;30:12–14. doi: 10.1111/jai.12422. DOI
Fujiwara A, Nishida-Umehara C, Sakamoto T, Okamoto N, Nakayama I, Abe S. Improved fish lymphocyte culture for chromosome preparation. Genetica. 2001;111:77–89. doi: 10.1023/A:1013788626712. PubMed DOI
Börk K, Drauch A, Israel JA, Pedroia J, Rodzen J, May B. Development of new microsatellite primers for green sturgeon and white sturgeon. Conserv Genet. 2008;9:973–979. doi: 10.1007/s10592-007-9417-9. DOI
Krueger CC, May B, Kincaid HL. Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci. 1997;54:1542–1547. doi: 10.1139/f97-061. DOI
Welsh AB, Blumberg M, May B. Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol Ecol Notes. 2003;3:47–55. doi: 10.1046/j.1471-8286.2003.00346.x. DOI
King TL, Lubinski BA, Spidle AP. Microsatellite DNA variation in Atlantic sturgeon Acipenser oxyrinchus oxyrinchus: and cross-species amplification in the Acipenseridae. Conserv Genet. 2001;2:103–119. doi: 10.1023/A:1011895429669. DOI
McQuown EC, Sloss BL, Sheehan RJ, Rodzen J, Tranah GJ, May B. Microsatellite analysis of genetic variation in sturgeon (Acipenseridae): new primer sequences for Scaphirhynchus and Acipenser. Trans Am Fish Soc. 2000;129:1380–1388. doi: 10.1577/1548-8659(2000)129<1380:MAOGVI>2.0.CO;2. DOI
StatSoft Inc. STATISTICA (data analysis software system), version 12; 2012. www.statsoft.com.
Yu XY, Yu XJ. A schizothoracin fish species, Diptychus dipogon, with very high number of chromosomes. Chrom Inform Serv. 1990;48:17–18.
Otto SP, Whitton J. Polyploidy: incidence and evolution. Annu Rev Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. PubMed DOI
Mason AS, Pires JCH. Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet. 2015;31:5–10. doi: 10.1016/j.tig.2014.09.011. PubMed DOI
Dettlaff TA, Ginsburg AS, Schmalhausen OI. Sturgeon fishes. Developmental biology and aquaculture. Berlin: Springer; 1993.
Kobayasi H. A cytological study on the maturation division in the oogenic process of the triploid ginbuta (Carassius auratus langsdorfii) Jpn J Ichthyol. 1976;76:234–240.
Yamashita M, Jiang J, Onozato H, Nakanishi T, Nagahama Y. A tripolar spindle formed at meiosis I assures the retention of the original ploidy in the gynogenetic triploid crucian carp, Ginbuna Carassius auratus langsdorfii. Dev Growth Differ. 1993;35:631–636. doi: 10.1111/j.1440-169X.1993.00631.x. PubMed DOI
Shimizu Y, Shibata N, Sakaizumi M, Yamashita M. Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. curvinotus. Zool Sci. 2000;17:951–958. doi: 10.2108/zsj.17.951. DOI
Arai K, Fujimoto T. Genomic constitution and atypical reproduction in polyploidy and unisexual lineages of the Misgurnus loach, a teleost fish. Cytogenet Genome Res. 2013;140:226–240. doi: 10.1159/000353301. PubMed DOI
Leggatt RA, Iwama GK. Occurrence of polyploidy in the fishes. Rev Fish Biol Fisher. 2003;13:237–246. doi: 10.1023/B:RFBF.0000033049.00668.fe. DOI
Aegerter S, Jalabert B. Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2004;231:59–71. doi: 10.1016/j.aquaculture.2003.08.019. DOI
Flajshans M, Kvasnicka P, Rab P. Genetic studies in tench (Tinca tinca)—high incidence spontaneous triploidy. Aquaculture. 1993;110:243–248. doi: 10.1016/0044-8486(93)90372-6. DOI
Flajshans M, Kohlmann K, Rab P. Autotriploid tench Tinca tinca (L.) larvae obtained by fertilization of eggs previously subjected to postovulatory ageing in vitro and in vivo. J Fish Biol. 2007;71:868–876. doi: 10.1111/j.1095-8649.2007.01557.x. DOI
Nomura K, Takeda Y, Unuma T, Morishima K, Tanaka H, Arai K, et al. Post-ovulatory oocyte aging induces spontaneous occurrence of polyploids and mosaics in artificial fertilization of Japanese eel, Anguilla japonica. Aquaculture. 2013;404–405:15–21. doi: 10.1016/j.aquaculture.2013.04.016. DOI
Devlin RH, Sakhrani D, Biagi CA, Eom KW. Occurrence of incomplete paternal-chromosome retention in GH-transgenic coho salmon being assessed for reproductive containment by pressure-shock-induced triploidy. Aquaculture. 2010;304:66–78. doi: 10.1016/j.aquaculture.2010.03.023. DOI
Varkonyi E, Bercsenyi M, Ozouf-Costaz C, Billard R. Chromosomal and morphological abnormalities caused by oocyte aging in Silurus glanis. J Fish Biol. 1998;52:899–906.
Glover KA, Madhun AS, Dahle G, Sørvik AG, Wennevik V, Skaala Ø, et al. The frequency of spontaneous triploidy in farmed Atlantic salmon produced in Norway during the period 2007–2014. BMC Genet. 2015;16:37. doi: 10.1186/s12863-015-0193-0. PubMed DOI PMC
Piferrer F, Beaumont A, Falguiere JC, Flajšhans M, Haffray P, Colombo L. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;239:125–156. doi: 10.1016/j.aquaculture.2009.04.036. DOI
Cuellar O, Uyeno T. Triploidy in rainbow trout. Cytogenetics. 1972;11:508–515. doi: 10.1159/000130217. PubMed DOI
Thorgaard GH, Gall GAE. Adult triploids in a rainbow trout family. Genetics. 1979;93:961–973. PubMed PMC
Cherfas NB, Rothbard S, Hulata G, Kozinsky O. Spontaneous diploidization of maternal chromosome set in ornamental (koi) carp, Cyprinus carpio L. J Appl Ichthyol. 1991;7:72–77. doi: 10.1111/j.1439-0426.1991.tb00512.x. DOI
Cherfas NB, Gomelsky B, Ben-Dom N, Hulata G. Evidence for the heritable nature of spontaneous diploidization in common carp Cyprinus carpio L. eggs. Aquacult Res. 1995;26:289–292. doi: 10.1111/j.1365-2109.1995.tb00914.x. DOI
Itono M, Morishima K, Fujimoto T, Bando E, Yamaha E, Arai K. Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae) J Exp Zool A Comp Exp Biol. 2006;305:513–523. doi: 10.1002/jez.a.283. PubMed DOI
Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6:836–846. doi: 10.1038/nrg1711. PubMed DOI
Lewis WH. Polyploidy in species populations. In: Lewis WH, editor. Polyploidy: biological relevance. New York: Plenum Press; 1980. pp. 103–192.
Schmid M, Evans BJ, Bogart JP. Polyploidy in Amphibia. Cytogenet Genome Res. 2015;145:315–330. doi: 10.1159/000431388. PubMed DOI
Krieger J, Fuerst PA. Evidence for a slowed rate of molecular evolution in the order Acipenseriformes. Mol Biol Evol. 2002;2002(19):891–897. doi: 10.1093/oxfordjournals.molbev.a004146. PubMed DOI
Simple Field Storage of Fish Samples for Measurement of DNA Content by Flow Cytometry
Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics