The functional organization of human epileptic hippocampus
Language English Country United States Media print-electronic
Document type Editorial, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 NS063039
NINDS NIH HHS - United States
R01 NS078136
NINDS NIH HHS - United States
UH2 NS095495
NINDS NIH HHS - United States
PubMed
27030735
PubMed Central
PMC4946613
DOI
10.1152/jn.00089.2016
PII: jn.00089.2016
Knihovny.cz E-resources
- Keywords
- behavioral state, connectivity, epilepsy, intracranial EEG, seizure onset zone,
- MeSH
- Adult MeSH
- Electroencephalography MeSH
- Epilepsy, Temporal Lobe pathology MeSH
- Hippocampus physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain Mapping MeSH
- Young Adult MeSH
- Brain Waves physiology MeSH
- Sleep physiology MeSH
- Spectrum Analysis MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Editorial MeSH
The function and connectivity of human brain is disrupted in epilepsy. We previously reported that the region of epileptic brain generating focal seizures, i.e., the seizure onset zone (SOZ), is functionally isolated from surrounding brain regions in focal neocortical epilepsy. The modulatory effect of behavioral state on the spatial and spectral scales over which the reduced functional connectivity occurs, however, is unclear. Here we use simultaneous sleep staging from scalp EEG with intracranial EEG recordings from medial temporal lobe to investigate how behavioral state modulates the spatial and spectral scales of local field potential synchrony in focal epileptic hippocampus. The local field spectral power and linear correlation between adjacent electrodes provide measures of neuronal population synchrony at different spatial scales, ∼1 and 10 mm, respectively. Our results show increased connectivity inside the SOZ and low connectivity between electrodes in SOZ and outside the SOZ. During slow-wave sleep, we observed decreased connectivity for ripple and fast ripple frequency bands within the SOZ at the 10 mm spatial scale, while the local synchrony remained high at the 1 mm spatial scale. Further study of these phenomena may prove useful for SOZ localization and help understand seizure generation, and the functional deficits seen in epileptic eloquent cortex.
See more in PubMed
Arunkumar A, Panday A, Joshi B, Ravindran A, Zaveri HP. Estimating correlation for a real-time measure of connectivity. Conf Proc IEEE Eng Med Biol Soc 2012: 5190–5193, 2012. doi:10.1109/EMBC.2012.6347163. PubMed DOI
Bagshaw AP, Jacobs J, LeVan P, Dubeau F, Gotman J. Effect of sleep stage on interictal high-frequency oscillations recorded from depth macroelectrodes in patients with focal epilepsy. Epilepsia 50: 617–628, 2009. doi:10.1111/j.1528-1167.2008.01784.x. PubMed DOI PMC
Bettus G, Wendling F, Guye M, Valton L, Régis J, Chauvel P, Bartolomei F. Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res 81: 58–68, 2008. doi:10.1016/j.eplepsyres.2008.04.020. PubMed DOI
Bower MR, Stead M, Bower RS, Kucewicz MT, Sulc V, Cimbalnik J, Brinkmann BH, Vasoli VM, St Louis EK, Meyer FB, Marsh WR, Worrell GA. Evidence for consolidation of neuronal assemblies after seizures in humans. J Neurosci 35: 999–1010, 2015. doi:10.1523/JNEUROSCI.3019-14.2015. PubMed DOI PMC
Bragin A, Wilson CL, Engel J. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia 41: S144–S152, 2000. PubMed
Brazdil M, Halamek J, Jurak P, Daniel P, Kuba R, Chrastina J, Novák Z, Rektor I. Interictal high-frequency oscillations indicate seizure onset zone in patients with focal cortical dysplasia. Epilepsy Res 90: 28–32, 2010. doi:10.1016/j.eplepsyres.2010.03.003. PubMed DOI
Brazdil M, Janecek J, Klimes P, Marecek M, Roman R, Jurak J, Chladek J, Daniel P, Rektor I, Halamek J, Plesinger F, Jirsa V. On the time course of synchronization patterns of neuronal discharges in the human brain during cognitive tasks. PloS One 8: e63293, 2013. doi:10.1371/journal.pone.0063293. PubMed DOI PMC
Brinkmann BH, Bower MR, Stengel KA, Worrell GA, Stead M. Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data. J Neurosci Methods 180: 185–192, 2009. PubMed PMC
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198, 2009. PubMed
Burns SP, Santaniello S, Yaffe RB, Jouny CC, Crone NE. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc Natl Acad Sci USA 111: E5321–E5330, 2014. doi:10.1073/pnas.1401752111. PubMed DOI PMC
Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14: 770–785, 2013. doi:10.1038/nrn3599. PubMed DOI
Gloor P, Tsai C, Haddad F. An assessment of the value of sleep-electroencephalography for the diagnosis of temporal lobe epilepsy. Electroencephalogr Clin Neurophysiol 10: 633–648, 1958. PubMed
Horwitz B. The elusive concept of brain connectivity. Neuroimage 19: 466–470, 2003. PubMed
Hu S, Stead M, Dai Q, Worrell GA. On the recording reference contribution to EEG correlation, phase synchrony, and coherence. IEEE Trans Syst Man Cybern B Cybern 40: 1294–1304, 2010. doi:10.1109/TSMCB.2009.2037237. PubMed DOI PMC
Iber C, Ancoli-Israel S, Chesson A, Quan SF; the American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Westchester, IL: American Academy of Sleep Medicine, 2007.
Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M. Local origin of field potentials in visual cortex. Neuron 61: 35–41, 2009. doi:10.1016/j.neuron.2008.11.016. PubMed DOI PMC
Kötter R. Anatomical concepts of brain connectivity. In: Handbook of Brain Connectivity, Series: Understanding Complex Systems, edited by Jirsa V, McIntosh AR. Berlin: Springer, 2007, p. 149–166.
Kucewicz MT, Cimbalnik J, Matsumoto JY, Brinkmann BH, Bower MR, Vasoli V, Sulc V, Meyer F, Marsh WR, Stead SM, Worrell GA. High frequency oscillations are associated with cognitive processing in human recognition memory. Brain 137: 2231–2244, 2014. doi:10.1093/brain/awu149. PubMed DOI PMC
Logothetis NK, Kayser C, Oeltermann A. In vivo measurement of cortical impedance spectrum in monkeys: Implications for signal propagation. Neuron 55: 809–823, 2007. PubMed
Lüders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W. The epileptogenic zone: general principles. Epileptic Disord 8, Suppl 2: S1–S9, 2006. PubMed
Matsumoto JY, Stead M, Kucewicz MT, Matsumoto AJ, Peters PA, Brinkmann BH, Danstrom JC, Goerss SJ, Marsh WR, Meyer FB, Worrell GA. Network oscillations modulate interictal epileptiform spike rate during human memory. Brain 136: 2444–2456, 2013. doi:10.1093/brain/awt159. PubMed DOI PMC
Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65: 37–100, 1985. PubMed
Mormann F, Lehnertz K, David P, Elger EC. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D Nonlinear Phenomena 144: 358–369, 2000.
Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant. Brno, Czech Republic: Institute of Scientific Instruments of CAS; Retrieved from https://signalplant.codeplex.com.
Schevon CA, Cappell J, Emerson R, Isler J, Grieve P, Goodman R, McKhann G, Weiner H, Doyle W, Kuzniecky R, Devinsky O, Gilliam F. Cortical abnormalities in epilepsy revealed by local EEG synchrony. Neuroimage 35: 140–148, 2007. PubMed PMC
Schiff SJ. Dangerous phase. Neuroinformatics 3: 315–318, 2005. PubMed PMC
Schindler K, Elger CE, Lehnertz K. Increasing synchronization may promote seizure termination: evidence from status epilepticus. Clin Neurophysiol 118: 1955–1968, 2007. PubMed
Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43: 219–227, 2002. PubMed
Sporns O. Networks of the Brain. MIT Press, 2010.
Staba RJ, Wilson CL, Bragin A, Jhung D, Fried I, Engel J. High-frequency oscillations recorded in human medial temporal lobe during sleep. Annals Neurol 56: 108–115, 2004. PubMed
Staba RJ, Bragin A. High-frequency oscillations and other electrophysiological biomarkers of epilepsy: Underlying mechanisms. Biomark Med 5: 545–556, 2011. PubMed PMC
Stead M, Bower M, Brinkmann BH, Lee K, Marsh WR, Meyer FB, Litt B, Gompel JV, Worrell GA. Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133: 2789–2797, 2010. PubMed PMC
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15: 273–289, 2002. PubMed
van den Heuvel MP, Kahn RS, Goñi J, Sporns O. High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci USA 109: 11372–11377, 2012. doi:10.1073/pnas.1203593109. PubMed DOI PMC
Wang HE, Bénar CG, Quilichini PP, Friston KJ, Jirsa VK, Bernard C. A systematic framework for functional connectivity measures. Front Neurosci 8: 1–22, 2014. doi:10.3389/fnins.2014.00405. PubMed DOI PMC
Warren CP, Hu S, Stead M, Brinkmann BH, Bower MR, Worrell GA. Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J Neurophysiol 104: 3530–3539, 2010. PubMed PMC
Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 127: 1496–1506, 2004. PubMed
Worrell GA, Jerbi K, Kobayashi K, Lina JM, Zelmann R, Le Van Quyen M. Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol 98: 265–278, 2012. PubMed PMC
Zaveri HP, Duckrow RB, Spencer SS. The effect of a scalp reference signal on coherence measurements of intracranial electroencephalograms. Clin Neurophysiol 111: 1293–1299, 2000. PubMed
Zaveri HP, Pincus SM, Goncharova II, Duckrow RB, Spencer DD, Spencer SS. Localization-related epilepsy exhibits significant connectivity away from the seizure onset area. Neuroreport 20: 891–895, 2009. PubMed
Multi-feature localization of epileptic foci from interictal, intracranial EEG
Behavioral state classification in epileptic brain using intracranial electrophysiology