A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity

. 2016 Jun 09 ; 17 (6) : . [epub] 20160609

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27294915

Odkazy
PubMed 27294915
PubMed Central PMC4926442
DOI 10.3390/ijms17060908
PII: ijms17060908
Knihovny.cz E-zdroje

Beside biomaterials' bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot), which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT).

Zobrazit více v PubMed

PubMed

PubMed DOI PMC

Horbett T.A. Adsorbed proteis on biomaterials. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science, an Introduction to Materials in Medicine. 3rd ed. Elsevier INC.; London, UK: 2013. pp. 394–408.

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI

Vendra V.K., Wu L., Krishnan S. Polymer Thin Films for Biomedical Applications. In: Kumar C., editor. Nanostructured Thin Films and Surfaces. 1st ed. Wiley-VCH; Weinheim, Germany: 2010. pp. 1–54.

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

Chen H., Yuan L., Song W., Wu Z., Li D. Biocompatible polymer materials: Role of protein-surface interactions. Prog. Polym. Sci. 2008;33:1059–1087. doi: 10.1016/j.progpolymsci.2008.07.006. DOI

Kaleekkal N.J., Thanigaivelan A., Durga M., Girish R., Rana D., Soundararajan P., Mohan D. Graphene oxide nanocomposite incorporated poly(ether imide) mixed matrix membranes for in vitro evaluation of its efficacy in blood purification applications. Ind. Eng. Chem. Res. 2015;54:7899–7913. doi: 10.1021/acs.iecr.5b01655. DOI

Chen Z., Wang Z., Fu Q., Ma Z., Fang P., He C. Microstructure and surface state of plasma-treated high-density polyethylene elucidated by energy-tunable positron annihilation and water contact angle measurements. JJAP Conf. Proc. 2014 doi: 10.7567/JJAPCP.2.011202. DOI

Lehocky M., Lapcik L., Neves M.C., Trindade T., Szyk-Warszynska L., Warszynski P., Hui D. Deposition/detachment of particles on plasma treated polymer surfaces. Mater. Sci. Forum Vols. 2003;426–432:2533–2538. doi: 10.4028/www.scientific.net/MSF.426-432.2533. DOI

Lehocky M., Amaral P.F.F., Coelho M.A.Z., Stahel P., Barros-Timmons A.M., Coutinho J.A.P. Attachment/detachment of Saccharomyces Cerevisiae on plasma deposited organosilicon thin films. Czechoslov. J. Phys. 2006;56:B1256–B1262. doi: 10.1007/s10582-006-0359-0. DOI

Lehocky M., Lapcik L., Dlabaja R., Rachunek L. Influence of artificially accelerated ageing on the adhesive joint of plasma treated polymer materials. Czechoslov. J. Phys. 2004;54:C533–C538. doi: 10.1007/BF03166446. DOI

Patel D., Wu J., Chan P., Upreti S., Turcotte G., Ye T. Surface modification of low density polyethylene films by homogeneous catalytic ozonation. Chem. Eng. Res. Des. 2012;90:1800–1806. doi: 10.1016/j.cherd.2012.03.009. DOI

PubMed DOI PMC

PubMed DOI

Garcia J.L., Bilek F., Lehocky M., Junkar I., Mozetic I., Sowe M. Enhanced printability of polyethylene through air plasma treatment. Vacuum. 2013;95:43–49. doi: 10.1016/j.vacuum.2013.02.008. DOI

PubMed DOI

Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

Vesel A., Mozetic M., Strnad S. Improvement of adhesion of fucoidan on polyethylene terephthalate surface using gas plasma treatments. Vacuum. 2011;85:1083–1086. doi: 10.1016/j.vacuum.2010.12.016. DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

Wijesinghe W.A.J.P., Jeon Y.J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 2012;88:13–20. doi: 10.1016/j.carbpol.2011.12.029. DOI

Friedrich J. The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design. Wiley-VCH; Weinheim, Germany: 2012. Polymer surface modification with monosort functional groups; pp. 249–302.

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...