Fine-scale genetic structure of natural Tuber aestivum sites in southern Germany

. 2016 Nov ; 26 (8) : 895-907. [epub] 20160726

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27460217
Odkazy

PubMed 27460217
DOI 10.1007/s00572-016-0719-y
PII: 10.1007/s00572-016-0719-y
Knihovny.cz E-zdroje

Although the Burgundy truffle (Tuber aestivum) is an ectomycorrhizal fungus of important economic value, its subterranean life cycle and population biology are still poorly understood. Here, we determine mating type and simple sequence repeat (SSR) maternal genotypes of mapped fruiting bodies to assess their genetic structure within two naturally colonized forest sites in southern Germany. Forty-one genotypes were identified from 112 fruiting bodies. According to their mating types, the maternal genotypes were aggregated only in one population. Genotypic diversity of individuals that mostly were small and occurred in 1 out of 2 years of sampling was high. Although these results suggested a ruderal colonization strategy, some genets spread several hundred meters. This result indicates that, besides sexual spore dispersal, vegetative growth or spreading by mycelial propagules contributes to dissemination. In one site, fewer individuals with a tendency to expand genets belonging to only one genetic group were observed. In the second site, numerous small individuals were found and were grouped into two clearly differentiated genetic groups that were spatially intermingled. Forest characteristics and disturbances are possible reasons for the observed genetic patterns. Our findings contribute to a better understanding of the biology of one of the most widespread and commercially important truffle species. This knowledge is critical for establishing and maintaining sustainable long-term truffle cultivations.

Zobrazit více v PubMed

Mycorrhiza. 2014 Apr;24 Suppl 1:S65-72 PubMed

Mol Ecol. 2004 Apr;13(4):921-35 PubMed

Appl Environ Microbiol. 2012 Sep;78(18):6534-9 PubMed

PLoS One. 2013 Dec 16;8(12):e82353 PubMed

Rapid Commun Mass Spectrom. 2004;18(2):199-205 PubMed

New Phytol. 2012 May;194(3):823-35 PubMed

Genetics. 2000 Jun;155(2):945-59 PubMed

New Phytol. 2011 Feb;189(3):710-22 PubMed

Mol Ecol. 2008 Oct;17(20):4433-45 PubMed

Mol Ecol. 2007 Dec;16(24):5115-39 PubMed

Mol Ecol. 2003 Jun;12(6):1577-88 PubMed

New Phytol. 2008;180(2):466-78 PubMed

Mycorrhiza. 2004 Feb;14(1):19-23 PubMed

Fungal Biol. 2011 Jul;115(7):569-97 PubMed

Mol Ecol. 2010 Nov;19(22):4994-5008 PubMed

Mycorrhiza. 2013 Nov;23(8):669-73 PubMed

Mycorrhiza. 2012 Jul;22(5):383-92 PubMed

Environ Microbiol. 2002 Oct;4(10):584-94 PubMed

New Phytol. 2013 Jul;199(1):176-87 PubMed

Appl Environ Microbiol. 2005 Nov;71(11):6584-9 PubMed

Appl Environ Microbiol. 2006 Apr;72(4):2390-3 PubMed

Mycorrhiza. 2007 Nov;17(8):667-75 PubMed

Appl Microbiol Biotechnol. 2013 Jun;97(12):5215-24 PubMed

Mol Ecol. 2005 Jul;14(8):2611-20 PubMed

New Phytol. 2013 Jul;199(1):10-3 PubMed

Environ Microbiol. 2005 Oct;7(10):1535-46 PubMed

FEMS Microbiol Ecol. 2011 Apr;76(1):170-84 PubMed

New Phytol. 2008;178(3):672-87 PubMed

Environ Microbiol. 2015 Aug;17 (8):3039-50 PubMed

Mol Ecol. 2013 Mar;22(6):1717-32 PubMed

Appl Plant Sci. 2013 Jan 31;1(2):null PubMed

Nature. 2010 Apr 15;464(7291):1033-8 PubMed

FEMS Microbiol Lett. 2011 May;318(1):84-91 PubMed

New Phytol. 2011 Feb;189(3):723-35 PubMed

Mol Ecol. 2007 May;16(9):1811-22 PubMed

J Evol Biol. 2012 Jun;25(6):1020-38 PubMed

FEMS Microbiol Lett. 2004 Jun 1;235(1):109-15 PubMed

Annu Rev Genet. 2000;34:165-186 PubMed

Mycorrhiza. 2016 Feb;26(2):99-110 PubMed

PLoS One. 2013;8(1):e52765 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...