The Combined Use of Imaging Approaches to Assess Drug Release from Multicomponent Solid Dispersions

. 2017 May ; 34 (5) : 990-1001. [epub] 20160829

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27573574
Odkazy

PubMed 27573574
PubMed Central PMC5382183
DOI 10.1007/s11095-016-2018-x
PII: 10.1007/s11095-016-2018-x
Knihovny.cz E-zdroje

PURPOSE: Imaging methods were used as tools to provide an understanding of phenomena that occur during dissolution experiments, and ultimately to select the best ratio of two polymers in a matrix in terms of enhancement of the dissolution rate and prevention of crystallization during dissolution. METHODS: Magnetic resonance imaging, ATR-FTIR spectroscopic imaging and Raman mapping have been used to study the release mechanism of a poorly water soluble drug, aprepitant, from multicomponent amorphous solid dispersions. Solid dispersions were prepared based on the combination of two selected polymers - Soluplus, as a solubilizer, and PVP, as a dissolution enhancer. Formulations were prepared in a ratio of Soluplus:PVP 1:10, 1:5, 1:3, and 1:1, in order to obtain favorable properties of the polymer carrier. RESULTS: The crystallization of aprepitant during dissolution has occurred to a varying degree in the polymer ratios 1:10, 1:5, and 1:3, but the increasing presence of Soluplus in the formulation delayed the onset of crystallization. The Soluplus:PVP 1:1 solid dispersion proved to be the best matrix studied, combining the abilities of both polymers in a synergistic manner. CONCLUSIONS: Aprepitant dissolution rate has been significantly enhanced. This study highlights the benefits of combining imaging methods in order to understand the release process.

Zobrazit více v PubMed

Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4:18–25. doi: 10.1016/j.apsb.2013.11.001. PubMed DOI PMC

Baghel S. Cathcart H, O’Reilly N J. Polymeric amorphous solid dispersion: A review of amorphization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105:2527–44. PubMed

He Y, Ho C. Amorphous solid dispersion: utilization and challenges in drug discovery and development. J Pharm Sci. 2015;104:3237–3258. doi: 10.1002/jps.24541. PubMed DOI

Janssens S, Mooter GV. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61:1571–1586. doi: 10.1211/jpp.61.12.0001. PubMed DOI

Ozaki S, Kushida I, Yamashita T, Hasebe T, Shirai O, Kano K. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs. J Pharm Sci. 2013;102:2273–2281. doi: 10.1002/jps.23588. PubMed DOI

Craig DQM. The mechanisms of drug release from solid dispersion in water-soluble polymers. Int J Pharm. 2002;231:131–144. doi: 10.1016/S0378-5173(01)00891-2. PubMed DOI

Lindfors L, Forséen S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci. 2018;325:404–413. doi: 10.1016/j.jcis.2008.05.034. PubMed DOI

Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Sci. 2018;70:493–499. PubMed

Punčochová K, Heng JYY, Beránek J, Štěpánek F. Investigation of drug-polymer interaction in solid dispersions by vapour sorption methods. Int J Pharm. 2014;469:159–167. doi: 10.1016/j.ijpharm.2014.04.048. PubMed DOI

Karavas E, Ktistis G, Xenakis A, Georgarakis E. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Eur J Pharm Sci. 2006;63:103–114. PubMed

Dalvi S, Dave RN. Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation. Ind Eng Chem Res. 2009;48:7581–7593. doi: 10.1021/ie900248f. DOI

Cölfen H. Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromol Rapid Commun. 2001;22:219–252. doi: 10.1002/1521-3927(20010201)22:4<219::AID-MARC219>3.0.CO;2-G. DOI

Hsieh Y, Box K, Taylor LS. Assessing the impact of polymers on the pH-induced precipitation behavior of poorly water soluble compounds using synchrotron wide angle x-ray scattering. J Pharm Sci. 2014;103:2724–2735. doi: 10.1002/jps.23890. PubMed DOI

Mah PT, Peltonen L, Novakovic D, Rades T, Strachan CJ, Laaksonen T. The effect of surfactants on the dissolution behavior of amorphous formulations. Eur J Pharm Biopharm. 2016;103:13–22. doi: 10.1016/j.ejpb.2016.03.007. PubMed DOI

Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328:119–129. doi: 10.1016/j.ijpharm.2006.08.010. PubMed DOI

Park SH, Choi HK. The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs. Int J Pharm. 2006;321:35–41. doi: 10.1016/j.ijpharm.2006.05.004. PubMed DOI

Punčochová K, Ewing AV, Gajdošová M, Sarvašová N, Kazarian SG, Beránek J, et al. Identifying the mechanisms of drug release from amorphous solid dispersions using MRI and ATR-FTIR spectroscopic imaging. Int J Pharm. 2015;483:256–267. doi: 10.1016/j.ijpharm.2015.02.035. PubMed DOI

Punčochová K, Vukosavljevic B, Hanuš J, Beránek J, Windbergs M, Štěpánek F. Non-invasive insight into the release mechanisms of a poorly soluble drug from amorphous solid dispersions by confocal Raman microscopy. Eur J Pharm Biopharm. 2016;101:119–125. doi: 10.1016/j.ejpb.2016.02.001. PubMed DOI

Liu J, Cao F, Zhang C, Ping Q. Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion. Acta Pharm Sin B. 2013;3:263–272. doi: 10.1016/j.apsb.2013.06.007. DOI

Kalivoda A, Fischbach M, Kleinebudde P. Application of mixtures of polymeric carriers for dissolution enhancement of fenofibrate using hot-melt extrusion. Int J Pharm. 2012;426:58–68. doi: 10.1016/j.ijpharm.2012.03.009. PubMed DOI

Ewing AV, Biggart GD, Hale CR, Clarke GS, Kazarian SG. Comparison of pharmaceutical formulations: ATR-FTIR spectroscopic imaging to study drug-carrier interactions. Int J Pharm. 2015;495:112–121. doi: 10.1016/j.ijpharm.2015.08.068. PubMed DOI

Kazarian SG, Ewing AV. Applications of Fourier transform infrared spectroscopic imaging to tablet dissolution and drug release. Expert Opin Drug Deliv. 2013;10:1207–1221. doi: 10.1517/17425247.2013.801452. PubMed DOI

Kazarian SG, Kong KWT, Bajomo M, van der Weerd J, Chan KL. Spectroscopic imaging applied to drug release. Food Bioprod Process. 2005;83:127–135. doi: 10.1205/fbp.04399. DOI

Ewing AV, Clarke GS, Kazarian SG. Stability of indomethacin with relevance to the release from amorphous solid dispersions studied with ATR-FTIR spectroscopic imaging. Eur J Pharm Sci. 2014;60:64–71. doi: 10.1016/j.ejps.2014.05.001. PubMed DOI

Nott KP. Magnetic resonance imaging of tablet dissolution. Eur J Pharm Biopharm. 2010;74:78–83. doi: 10.1016/j.ejpb.2009.07.003. PubMed DOI

Langham ZA, Booth J, LES P, Hughes LP, Reynolds GK, Wren SAC. Mechanistic insights into the dissolution of spray-dried amorphous solid dispersions. J Pharm Sci. 2012;101:2798–2810. doi: 10.1002/jps.23192. PubMed DOI

Niederquell A, Kuentz M. Biorelevant dissolution of poorly soluble weak acids studied by UV imaging reveals ranges of fractal-like kinetics. Int J Pharm. 2014;463:38–49. doi: 10.1016/j.ijpharm.2013.12.049. PubMed DOI

Østergaard J, Lenke J, Jensen SJ, Sun Y, Ye F. UV imaging for in vitro dissolution and release studies: initial experiences. Dissolut Technol. 2014;21:27–38.

Tres F, Treacher K, Booth J, Hughes LP, Wren SAC, Aylott JW, et al. Real time Raman imaging to understand dissolution performance of amorphous solid dispersions. J Control Release. 2014;188:53–60. doi: 10.1016/j.jconrel.2014.05.061. PubMed DOI

Gordon KC, McGoverin CM. Raman mapping of pharmaceuticals. Int J Pharm. 2011;417:151–162. doi: 10.1016/j.ijpharm.2010.12.030. PubMed DOI

Kimber JA, Kazarian SG, Štěpánek F. Formulation design space analysis for drug release from swelling polymer tablets. Powder Technol. 2013;236:179–187. doi: 10.1016/j.powtec.2012.02.027. DOI

Kašpar O, Tokárová V, Oka S, Sowrirajan K, Ramachandran R, Štěpánek F. Combined UV/Vis and micro-tomography investigation of acetaminophen dissolution from granules. Int J Pharm. 2013;458:272–281. doi: 10.1016/j.ijpharm.2013.10.032. PubMed DOI

Gajdošová M, Pěček D, Sarvašová N, Grof Z, Štěpánek F. Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging. Int J Pharm. 2016;500:136–143. doi: 10.1016/j.ijpharm.2016.01.023. PubMed DOI

Kazarian SG, Chan KLA. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst. 2013;138:1940–1951. doi: 10.1039/c3an36865c. PubMed DOI

Kazarian SG, van der Weerd J. Simultaneous FTIR spectroscopic imaging and visible photography to monitor tablet dissolution and drug release. Pharm Res. 2018;24:853–860. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...