The Combined Use of Imaging Approaches to Assess Drug Release from Multicomponent Solid Dispersions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27573574
PubMed Central
PMC5382183
DOI
10.1007/s11095-016-2018-x
PII: 10.1007/s11095-016-2018-x
Knihovny.cz E-zdroje
- Klíčová slova
- FT-IR spectroscopic imaging, amorphous solid dispersion, confocal Raman spectroscopy, crystallisation, magnetic resonance imaging,
- MeSH
- aprepitant MeSH
- farmaceutická chemie metody MeSH
- krystalizace MeSH
- magnetická rezonanční tomografie metody MeSH
- morfoliny chemie MeSH
- nosiče léků chemie MeSH
- polyethylenglykoly chemie MeSH
- polymery chemie MeSH
- polyvinyly chemie MeSH
- pyrrolidiny chemie MeSH
- rozpustnost MeSH
- spektroskopie infračervená s Fourierovou transformací metody MeSH
- uvolňování léčiv MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aprepitant MeSH
- morfoliny MeSH
- nosiče léků MeSH
- poly(N-vinylpyrrolidine) MeSH Prohlížeč
- polyethylenglykoly MeSH
- polymery MeSH
- polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer MeSH Prohlížeč
- polyvinyly MeSH
- pyrrolidiny MeSH
- voda MeSH
PURPOSE: Imaging methods were used as tools to provide an understanding of phenomena that occur during dissolution experiments, and ultimately to select the best ratio of two polymers in a matrix in terms of enhancement of the dissolution rate and prevention of crystallization during dissolution. METHODS: Magnetic resonance imaging, ATR-FTIR spectroscopic imaging and Raman mapping have been used to study the release mechanism of a poorly water soluble drug, aprepitant, from multicomponent amorphous solid dispersions. Solid dispersions were prepared based on the combination of two selected polymers - Soluplus, as a solubilizer, and PVP, as a dissolution enhancer. Formulations were prepared in a ratio of Soluplus:PVP 1:10, 1:5, 1:3, and 1:1, in order to obtain favorable properties of the polymer carrier. RESULTS: The crystallization of aprepitant during dissolution has occurred to a varying degree in the polymer ratios 1:10, 1:5, and 1:3, but the increasing presence of Soluplus in the formulation delayed the onset of crystallization. The Soluplus:PVP 1:1 solid dispersion proved to be the best matrix studied, combining the abilities of both polymers in a synergistic manner. CONCLUSIONS: Aprepitant dissolution rate has been significantly enhanced. This study highlights the benefits of combining imaging methods in order to understand the release process.
Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
Zobrazit více v PubMed
Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4:18–25. doi: 10.1016/j.apsb.2013.11.001. PubMed DOI PMC
Baghel S. Cathcart H, O’Reilly N J. Polymeric amorphous solid dispersion: A review of amorphization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105:2527–44. PubMed
He Y, Ho C. Amorphous solid dispersion: utilization and challenges in drug discovery and development. J Pharm Sci. 2015;104:3237–3258. doi: 10.1002/jps.24541. PubMed DOI
Janssens S, Mooter GV. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61:1571–1586. doi: 10.1211/jpp.61.12.0001. PubMed DOI
Ozaki S, Kushida I, Yamashita T, Hasebe T, Shirai O, Kano K. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs. J Pharm Sci. 2013;102:2273–2281. doi: 10.1002/jps.23588. PubMed DOI
Craig DQM. The mechanisms of drug release from solid dispersion in water-soluble polymers. Int J Pharm. 2002;231:131–144. doi: 10.1016/S0378-5173(01)00891-2. PubMed DOI
Lindfors L, Forséen S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci. 2018;325:404–413. doi: 10.1016/j.jcis.2008.05.034. PubMed DOI
Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Sci. 2018;70:493–499. PubMed
Punčochová K, Heng JYY, Beránek J, Štěpánek F. Investigation of drug-polymer interaction in solid dispersions by vapour sorption methods. Int J Pharm. 2014;469:159–167. doi: 10.1016/j.ijpharm.2014.04.048. PubMed DOI
Karavas E, Ktistis G, Xenakis A, Georgarakis E. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Eur J Pharm Sci. 2006;63:103–114. PubMed
Dalvi S, Dave RN. Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation. Ind Eng Chem Res. 2009;48:7581–7593. doi: 10.1021/ie900248f. DOI
Cölfen H. Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromol Rapid Commun. 2001;22:219–252. doi: 10.1002/1521-3927(20010201)22:4<219::AID-MARC219>3.0.CO;2-G. DOI
Hsieh Y, Box K, Taylor LS. Assessing the impact of polymers on the pH-induced precipitation behavior of poorly water soluble compounds using synchrotron wide angle x-ray scattering. J Pharm Sci. 2014;103:2724–2735. doi: 10.1002/jps.23890. PubMed DOI
Mah PT, Peltonen L, Novakovic D, Rades T, Strachan CJ, Laaksonen T. The effect of surfactants on the dissolution behavior of amorphous formulations. Eur J Pharm Biopharm. 2016;103:13–22. doi: 10.1016/j.ejpb.2016.03.007. PubMed DOI
Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328:119–129. doi: 10.1016/j.ijpharm.2006.08.010. PubMed DOI
Park SH, Choi HK. The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs. Int J Pharm. 2006;321:35–41. doi: 10.1016/j.ijpharm.2006.05.004. PubMed DOI
Punčochová K, Ewing AV, Gajdošová M, Sarvašová N, Kazarian SG, Beránek J, et al. Identifying the mechanisms of drug release from amorphous solid dispersions using MRI and ATR-FTIR spectroscopic imaging. Int J Pharm. 2015;483:256–267. doi: 10.1016/j.ijpharm.2015.02.035. PubMed DOI
Punčochová K, Vukosavljevic B, Hanuš J, Beránek J, Windbergs M, Štěpánek F. Non-invasive insight into the release mechanisms of a poorly soluble drug from amorphous solid dispersions by confocal Raman microscopy. Eur J Pharm Biopharm. 2016;101:119–125. doi: 10.1016/j.ejpb.2016.02.001. PubMed DOI
Liu J, Cao F, Zhang C, Ping Q. Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion. Acta Pharm Sin B. 2013;3:263–272. doi: 10.1016/j.apsb.2013.06.007. DOI
Kalivoda A, Fischbach M, Kleinebudde P. Application of mixtures of polymeric carriers for dissolution enhancement of fenofibrate using hot-melt extrusion. Int J Pharm. 2012;426:58–68. doi: 10.1016/j.ijpharm.2012.03.009. PubMed DOI
Ewing AV, Biggart GD, Hale CR, Clarke GS, Kazarian SG. Comparison of pharmaceutical formulations: ATR-FTIR spectroscopic imaging to study drug-carrier interactions. Int J Pharm. 2015;495:112–121. doi: 10.1016/j.ijpharm.2015.08.068. PubMed DOI
Kazarian SG, Ewing AV. Applications of Fourier transform infrared spectroscopic imaging to tablet dissolution and drug release. Expert Opin Drug Deliv. 2013;10:1207–1221. doi: 10.1517/17425247.2013.801452. PubMed DOI
Kazarian SG, Kong KWT, Bajomo M, van der Weerd J, Chan KL. Spectroscopic imaging applied to drug release. Food Bioprod Process. 2005;83:127–135. doi: 10.1205/fbp.04399. DOI
Ewing AV, Clarke GS, Kazarian SG. Stability of indomethacin with relevance to the release from amorphous solid dispersions studied with ATR-FTIR spectroscopic imaging. Eur J Pharm Sci. 2014;60:64–71. doi: 10.1016/j.ejps.2014.05.001. PubMed DOI
Nott KP. Magnetic resonance imaging of tablet dissolution. Eur J Pharm Biopharm. 2010;74:78–83. doi: 10.1016/j.ejpb.2009.07.003. PubMed DOI
Langham ZA, Booth J, LES P, Hughes LP, Reynolds GK, Wren SAC. Mechanistic insights into the dissolution of spray-dried amorphous solid dispersions. J Pharm Sci. 2012;101:2798–2810. doi: 10.1002/jps.23192. PubMed DOI
Niederquell A, Kuentz M. Biorelevant dissolution of poorly soluble weak acids studied by UV imaging reveals ranges of fractal-like kinetics. Int J Pharm. 2014;463:38–49. doi: 10.1016/j.ijpharm.2013.12.049. PubMed DOI
Østergaard J, Lenke J, Jensen SJ, Sun Y, Ye F. UV imaging for in vitro dissolution and release studies: initial experiences. Dissolut Technol. 2014;21:27–38.
Tres F, Treacher K, Booth J, Hughes LP, Wren SAC, Aylott JW, et al. Real time Raman imaging to understand dissolution performance of amorphous solid dispersions. J Control Release. 2014;188:53–60. doi: 10.1016/j.jconrel.2014.05.061. PubMed DOI
Gordon KC, McGoverin CM. Raman mapping of pharmaceuticals. Int J Pharm. 2011;417:151–162. doi: 10.1016/j.ijpharm.2010.12.030. PubMed DOI
Kimber JA, Kazarian SG, Štěpánek F. Formulation design space analysis for drug release from swelling polymer tablets. Powder Technol. 2013;236:179–187. doi: 10.1016/j.powtec.2012.02.027. DOI
Kašpar O, Tokárová V, Oka S, Sowrirajan K, Ramachandran R, Štěpánek F. Combined UV/Vis and micro-tomography investigation of acetaminophen dissolution from granules. Int J Pharm. 2013;458:272–281. doi: 10.1016/j.ijpharm.2013.10.032. PubMed DOI
Gajdošová M, Pěček D, Sarvašová N, Grof Z, Štěpánek F. Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging. Int J Pharm. 2016;500:136–143. doi: 10.1016/j.ijpharm.2016.01.023. PubMed DOI
Kazarian SG, Chan KLA. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst. 2013;138:1940–1951. doi: 10.1039/c3an36865c. PubMed DOI
Kazarian SG, van der Weerd J. Simultaneous FTIR spectroscopic imaging and visible photography to monitor tablet dissolution and drug release. Pharm Res. 2018;24:853–860. PubMed