A Novel Fucose-binding Lectin from Photorhabdus luminescens (PLL) with an Unusual Heptabladed β-Propeller Tetrameric Structure
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27758853
PubMed Central
PMC5122772
DOI
10.1074/jbc.m115.693473
PII: S0021-9258(20)34586-5
Knihovny.cz E-zdroje
- Klíčová slova
- Galleria mellonella, Photorhabdus luminescens, bacterial pathogenesis, crystal structure, hemocytes from insect larvae, host/pathogen interaction, lectin, structural biology,
- MeSH
- bakteriální proteiny chemie izolace a purifikace MeSH
- fukosa chemie MeSH
- krystalografie rentgenová MeSH
- kvarterní struktura proteinů MeSH
- lektiny chemie izolace a purifikace MeSH
- Photorhabdus chemie MeSH
- proteinové domény MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fukosa MeSH
- lektiny MeSH
Photorhabdus luminescens is known for its symbiosis with the entomopathogenic nematode Heterorhabditis bacteriophora and its pathogenicity toward insect larvae. A hypothetical protein from P. luminescens was identified, purified from the native source, and characterized as an l-fucose-binding lectin, named P. luminescens lectin (PLL). Glycan array and biochemical characterization data revealed PLL to be specific toward l-fucose and the disaccharide glycan 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 PLL was discovered to be a homotetramer with an intersubunit disulfide bridge. The crystal structures of native and recombinant PLL revealed a seven-bladed β-propeller fold creating seven putative fucose-binding sites per monomer. The crystal structure of the recombinant PLL·l-fucose complex confirmed that at least three sites were fucose-binding. Moreover, the crystal structures indicated that some of the other sites are masked either by the tetrameric nature of the lectin or by incorporation of the C terminus of the lectin into one of these sites. PLL exhibited an ability to bind to insect hemocytes and the cuticular surface of a nematode, H. bacteriophora.
From the Central European Institute of Technology
the Department of Biochemistry Faculty of Science
the National Centre for Biomolecular Research Faculty of Science and
Zobrazit více v PubMed
Joyce S. A., Watson R. J., and Clarke D. J. (2006) The regulation of pathogenicity and mutualism in Photorhabdus. Curr. Opin. Microbiol. 9, 127–132 PubMed
Forst S., Dowds B., Boemare N., and Stackebrandt E. (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51, 47–72 PubMed
Forst S., and Nealson K. (1996) Molecular biology of the symbiotic pathogenic bacteria Xenorhabdus spp., and Photorhabdus spp. Microbiol. Rev. 60, 21–43 PubMed PMC
Duchaud E., Rusniok C., Frangeul L., Buchrieser C., Givaudan A., Taourit S., Bocs S., Boursaux-Eude C., Chandler M., Charles J. F., Dassa E., Derose R., Derzelle S., Freyssinet G., Gaudriault S., et al. (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21, 1307–13 PubMed
Williamson V. M., and Kaya H. K. (2003) Sequence of a symbiont. Nat. Biotechnol. 21, 1294–1295 PubMed
Dobes P., Wang Z., Markus R., Theopold U., and Hyrsl P. (2012) An improved method for nematode infection assays in Drosophila larvae. Fly 6, 75–79 PubMed PMC
Stefanovska T., Pidlishyuk V., and Kaya H. (2008) Host range and infectivity of Heterorhabditis bacteriophora (Heterorhabditidae) from Ukraine. Commun. Agric. Appl. Biol. Sci. 73, 693–698 PubMed
Sharon N. (2007) Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 282, 2753–2764 PubMed
Audfray A., Claudinon J., Abounit S., Ruvoën-Clouet N., Larson G., Smith D. F., Wimmerová M., Le Pendu J., Römer W., Varrot A., and Imberty A. (2012) Fucose-binding lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes. J. Biol. Chem. 287, 4335–4347 PubMed PMC
Houser J., Komarek J., Kostlanova N., Cioci G., Varrot A., Kerr S. C., Lahmann M., Balloy V., Fahy J. V., Chignard M., Imberty A., and Wimmerova M. (2013) A soluble fucose-specific lectin from Aspergillus fumigatus conidia-structure, specificity and possible role in fungal pathogenicity. PLoS One 8, e83077. PubMed PMC
Nordbring-Hertz B., and Mattiasson B. (1979) Action of a nematode-trapping fungus shows lectin-mediated host-microorganism interaction. Nature 281, 477–479
Borrebaeck C. A. K., Mattiasson B., and Nordbring-Hertz B. (1984) Isolation and partial characterization of a carbohydrate-binding protein from a nematode-trapping fungus. J. Bacteriol. 159, 53–56 PubMed PMC
Heim C., Hertzberg H., Butschi A., Bleuler-Martinez S., Aebi M., Deplazes P., Künzler M., and Štefanić S. (2015) Inhibition of Haemonchus contortus larval development by fungal lectins. Parasit. Vectors 8, 425–435 PubMed PMC
Cappello M., Bungiro R. D., Harrison L. M., Bischof L. J., Griffitts J. S., Barrows B. D., and Aroian R. V. (2006) A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proc. Natl. Acad. Sci. U.S.A. 103, 15154–15159 PubMed PMC
Hu Y., Georghiou S. B., Kelleher A. J., and Aroian R. V. (2010) Bacillus thuringiensis Cry5B protein is highly efficacious as a single-dose therapy against an intestinal roundworm infection in mice. PLoS Negl. Trop. Dis. 4, e614. PubMed PMC
Hui F., Scheib U., Hu Y., Sommer R. J., Aroian R. V., and Ghosh P. (2012) Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry 51, 9911–9921 PubMed PMC
Griffitts J. S., Haslam S. M., Yang T., Garczynski S. F., Mulloy B., Morris H., Cremer P. S., Dell A., Adang M. J., and Aroian R. V. (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307, 922–925 PubMed
Griffitts J. S., Whitacre J. L., Stevens D. E., and Aroian R. V. (2001) Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293, 860–864 PubMed
Han R., and Ehlers R. U. (2000) Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J. Invertebr. Pathol. 75, 55–58 PubMed
Hunter S. W., Fujiwara T., and Brennan P. J. (1982) Structure and antigenicity of the major specific glyco lipid antigen of Mycobacterium leprae. J. Biol. Chem. 257, 15072–15078 PubMed
Kondakov N. N., Mel'nikova T. M., Chekryzhova T. V., Mel'nikova M. V., Zinin I., Torgov V. I., Chizhov A. O., and Kononov L. O. (2015) Synthesis of a disaccharide of phenolic glycolipid from Mycobacterium leprae (PGL-I) and its conjugates with bovine serum albumin. Russ. Chem. Bull. 64, 1142–1148
Staudacher E. (2012) Methylation: an uncommon modification of glycans. Biol. Chem. 393, 675–685 PubMed PMC
Wohlschlager T., Butschi A., Grassi P., Sutov G., Gauss R., Hauck D., Schmieder S. S., Knobel M., Titz A., Dell A., Haslam S. M., Hengartner M. O., Aebi M., and Künzler M. (2014) Methylated glycans as conserved targets of animal and fungal innate defense. Proc. Natl. Acad. Sci. U.S.A. 111, E2787–E2796 PubMed PMC
Wimmerova M., Mitchell E., Sanchez J. F., Gautier C., and Imberty A. (2003) Crystal structure of fungal lectin: six-bladed β-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J. Biol. Chem. 278, 27059–27067 PubMed
Cioci G., Mitchell E. P., Chazalet V., Debray H., Oscarson S., Lahmann M., Gautier C., Breton C., Perez S., and Imberty A. (2006) β-Propeller crystal structure of Psathyrella velutina lectin: an integrin-like fungal protein interacting with monosaccharides and calcium. J. Mol. Biol. 357, 1575–1591 PubMed
Kostlánová N., Mitchell E. P., Lortat-Jacob H., Oscarson S., Lahmann M., Gilboa-Garber N., Chambat G., Wimmerová M., and Imberty A. (2005) The fucose-binding lectin from Ralstonia solanacearum: a new type of β-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J. Biol. Chem. 280, 27839–27849 PubMed
Hao Y.-J., Montiel R., Lucena M. A., Costa M., and and Simoes N. (2012) Genetic diversity and comparative analysis of gene expression between Heterorhabditis bacteriophora Az29 and Az36 isolates: uncovering candidate genes involved in insect pathogenicity. Exp. Parasitol. 130, 116–125 PubMed
ffrench-Constant R. H., Dowling A., and Waterfield N. R. (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49, 436–451 PubMed
Li Y., Hu X., Zhang X Liu Z., Ding X., Xia L., and Hu S. (2014) Photorhabdus luminescens PirAB-fusion protein exhibits both cytotoxicity and insecticidal activity. FEMS Microbiol. Lett. 356, 23–31 PubMed
Fröbius A. C., Kanost M. R., Götz P., and Vilcinskas A. (2000) Isolation and characterization of novel inducible serine protease inhibitors from larval hemolymph of the greater wax moth Galleria mellonella. Eur. J. Biochem. 267, 2046–2053 PubMed
Glatz R., Roberts H. L. S., Li D., Sarjan M., Theopold U. H., Asgari S., and Schmidt O. (2004) Lectin-induced haemocyte inactivation in insects. J. Insect Physiol. 50, 955–963 PubMed
Beckage N. E., and Gelman D. B. (2004) Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol. 49, 299–330 PubMed
Eisemann C. H., Donaldson R. A., Pearson R. D., Cadogan L. C., Vacuolo T., and Tellam R. L. (1994) Larvicidal activity of lectins on Lucilia cuprina: mechanism of action. Entomol. Exp. Appl. 72, 1–10
Oliveira C. F. R., Luz L. A., Paiva P. M. G., Coelho L. C. B. B., Marangoni S., and Macedo M. L. R. (2011) Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects. Process Biochem. 46, 498–504
Browne N., Heelan M., and Kavanagh K. (2013) An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4, 597–603 PubMed PMC
Cochran J. R., Aivazian D., Cameron T. O., and Stern L. J. (2001) Receptor clustering and transmembrane signaling in T cells. Trends Biochem. Sci. 26, 304–310 PubMed
Conway E. M., Nowakowski B., and Steiner-Mosonyi M. (1994) Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J. Cell Physiol. 158, 285–298 PubMed
Muro S., Wiewrodt R., Thomas A., Koniaris L., Albelda S. M., Muzykantov V. R., and Koval M. (2003) A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J. Cell Sci. 116, 1599–1609 PubMed
Sharon N., and Lis H. (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R–62R PubMed
Bandyopadhyay S., Roy A., and Das S. (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci. 161, 1025–1033
Campbell L. R., and Gaugler R. (1992) Effect of exsheathment on motility and pathogenicity of two entomopathogenic nematode species. J. Nematol. 24, 365–370 PubMed PMC
Peters A., Gouge D. H., Ehlers R., and Hague N. G. M. (1997) Avoidance of encapsulation by Heterorhabditis spp. infecting larvae of Tipula oleracea. J. Invertebr. Pathol. 70, 161–164 PubMed
Bleuler-Martínez S., Butschi A., Garbani M., Wälti M. A., Wohlschlager T., Potthoff E., Sabotiĉ J., Pohleven J., Lüthy P., Hengartner M. O., Aebi M., and Künzler M. (2011) A lectin-mediated resistance of higher fungi against predators and parasites. Mol. Ecol. 20, 3056–3070 PubMed
Amano K., Katayama H., Saito A., Ando A., and Nagata Y. (2012) Aleuria aurantia lectin exhibits antifungal activity against Mucor racemosus. Biosci. Biotechnol. Biochem. 76, 967–970 PubMed
Ciche T. A., Kim K. S., Kaufmann-Daszczuk B., Nguyen K. C., and Hall D. H. (2008) Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora Nematodes. Appl. Environ. Microbiol. 74, 2275–2287 PubMed PMC
Shevchenko A., Wilm M., Vorm O., and Mann M. (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem. 68, 850–858 PubMed
Vojtek L., Dobeš P., Büyükgüzel E., Atosuo J., and Hyršl P. (2014) Bioluminescent assay for evaluating antimicrobial activity in insect haemolymph. Eur. J. Entomol. 111, 335–340
Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U.S.A. 76, 4350–4354 PubMed PMC
Wiseman T., Williston S., Brandts J. F., and Lin L. N. (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 PubMed
Schuck P. (2000) Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 PubMed PMC
Marchetti R., Malinovska L., Lameignère E., Adamova L., de Castro C., Cioci G., Stanetty C., Kosma P., Molinaro A., Wimmerova M., Imberty A., and Silipo A. (2012) Burkholderia cenocepacia lectin A binding to heptoses from the bacterial lipopolysaccharide. Glycobiology 22, 1387–1398 PubMed
Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 PubMed
Weber K., and Osborn M. (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406–4412 PubMed
Kabsch W. (2010) XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 PubMed PMC
Winn M. D., Ballard C. C., Cowtan K. D., Dodson E. J., Emsley P., Evans P. R., Keegan R. M., Krissinel E. B., Leslie A. G. W., McCoy A., McNicholas S. J., Murshudov G. N., Pannu N. S., Potterton E. A., Powell H. R., et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 PubMed PMC
Mueller U., Darowski N., Fuchs M. R., Förster R., Hellmig M., Paithankar K. S., Pühringer S., Steffien M., Zocher G., and Weiss M. S. (2012) Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 19, 442–449 PubMed PMC
Krug M., Weiss M. S., Heinemann U., and Mueller U. (2012) XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Cryst. 45, 568–572
Pape T., and Schneider T. R. (2004) HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Cryst. 37, 843–844
Langer G., Cohen S. X., Lamzin V. S., and Perrakis A. (2008) Automated macromolecular model-building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 PubMed PMC
Vagin A., and Teplyakov A. (2010) Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 PubMed
Vagin A. A., Steiner R. S., Lebedev A. A., Potterton L., McNicholas S., Long F., and Murshudov G. N. (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2284–2295 PubMed
Emsley P., Lohkamp B., Scott W. G., and Cowtan K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 PubMed PMC
Chen V. B., Arendall W. B. 3rd, Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., Murray L. W., Richardson J. S., and Richardson D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 PubMed PMC
Haydak M. H. (1936) A food for rearing laboratory animals. J. Econ. Entomol. 29, 1026
Lectin PLL3, a Novel Monomeric Member of the Seven-Bladed β-Propeller Lectin Family
Fucosylated inhibitors of recently identified bangle lectin from Photorhabdus asymbiotica
PDB
5C9L, 5C9O, 5C9P