A Novel Fucose-binding Lectin from Photorhabdus luminescens (PLL) with an Unusual Heptabladed β-Propeller Tetrameric Structure

. 2016 Nov 25 ; 291 (48) : 25032-25049. [epub] 20161007

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27758853
Odkazy

PubMed 27758853
PubMed Central PMC5122772
DOI 10.1074/jbc.m115.693473
PII: S0021-9258(20)34586-5
Knihovny.cz E-zdroje

Photorhabdus luminescens is known for its symbiosis with the entomopathogenic nematode Heterorhabditis bacteriophora and its pathogenicity toward insect larvae. A hypothetical protein from P. luminescens was identified, purified from the native source, and characterized as an l-fucose-binding lectin, named P. luminescens lectin (PLL). Glycan array and biochemical characterization data revealed PLL to be specific toward l-fucose and the disaccharide glycan 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 PLL was discovered to be a homotetramer with an intersubunit disulfide bridge. The crystal structures of native and recombinant PLL revealed a seven-bladed β-propeller fold creating seven putative fucose-binding sites per monomer. The crystal structure of the recombinant PLL·l-fucose complex confirmed that at least three sites were fucose-binding. Moreover, the crystal structures indicated that some of the other sites are masked either by the tetrameric nature of the lectin or by incorporation of the C terminus of the lectin into one of these sites. PLL exhibited an ability to bind to insect hemocytes and the cuticular surface of a nematode, H. bacteriophora.

Zobrazit více v PubMed

Joyce S. A., Watson R. J., and Clarke D. J. (2006) The regulation of pathogenicity and mutualism in Photorhabdus. Curr. Opin. Microbiol. 9, 127–132 PubMed

Forst S., Dowds B., Boemare N., and Stackebrandt E. (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51, 47–72 PubMed

Forst S., and Nealson K. (1996) Molecular biology of the symbiotic pathogenic bacteria Xenorhabdus spp., and Photorhabdus spp. Microbiol. Rev. 60, 21–43 PubMed PMC

Duchaud E., Rusniok C., Frangeul L., Buchrieser C., Givaudan A., Taourit S., Bocs S., Boursaux-Eude C., Chandler M., Charles J. F., Dassa E., Derose R., Derzelle S., Freyssinet G., Gaudriault S., et al. (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21, 1307–13 PubMed

Williamson V. M., and Kaya H. K. (2003) Sequence of a symbiont. Nat. Biotechnol. 21, 1294–1295 PubMed

Dobes P., Wang Z., Markus R., Theopold U., and Hyrsl P. (2012) An improved method for nematode infection assays in Drosophila larvae. Fly 6, 75–79 PubMed PMC

Stefanovska T., Pidlishyuk V., and Kaya H. (2008) Host range and infectivity of Heterorhabditis bacteriophora (Heterorhabditidae) from Ukraine. Commun. Agric. Appl. Biol. Sci. 73, 693–698 PubMed

Sharon N. (2007) Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 282, 2753–2764 PubMed

Audfray A., Claudinon J., Abounit S., Ruvoën-Clouet N., Larson G., Smith D. F., Wimmerová M., Le Pendu J., Römer W., Varrot A., and Imberty A. (2012) Fucose-binding lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes. J. Biol. Chem. 287, 4335–4347 PubMed PMC

Houser J., Komarek J., Kostlanova N., Cioci G., Varrot A., Kerr S. C., Lahmann M., Balloy V., Fahy J. V., Chignard M., Imberty A., and Wimmerova M. (2013) A soluble fucose-specific lectin from Aspergillus fumigatus conidia-structure, specificity and possible role in fungal pathogenicity. PLoS One 8, e83077. PubMed PMC

Nordbring-Hertz B., and Mattiasson B. (1979) Action of a nematode-trapping fungus shows lectin-mediated host-microorganism interaction. Nature 281, 477–479

Borrebaeck C. A. K., Mattiasson B., and Nordbring-Hertz B. (1984) Isolation and partial characterization of a carbohydrate-binding protein from a nematode-trapping fungus. J. Bacteriol. 159, 53–56 PubMed PMC

Heim C., Hertzberg H., Butschi A., Bleuler-Martinez S., Aebi M., Deplazes P., Künzler M., and Štefanić S. (2015) Inhibition of Haemonchus contortus larval development by fungal lectins. Parasit. Vectors 8, 425–435 PubMed PMC

Cappello M., Bungiro R. D., Harrison L. M., Bischof L. J., Griffitts J. S., Barrows B. D., and Aroian R. V. (2006) A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proc. Natl. Acad. Sci. U.S.A. 103, 15154–15159 PubMed PMC

Hu Y., Georghiou S. B., Kelleher A. J., and Aroian R. V. (2010) Bacillus thuringiensis Cry5B protein is highly efficacious as a single-dose therapy against an intestinal roundworm infection in mice. PLoS Negl. Trop. Dis. 4, e614. PubMed PMC

Hui F., Scheib U., Hu Y., Sommer R. J., Aroian R. V., and Ghosh P. (2012) Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry 51, 9911–9921 PubMed PMC

Griffitts J. S., Haslam S. M., Yang T., Garczynski S. F., Mulloy B., Morris H., Cremer P. S., Dell A., Adang M. J., and Aroian R. V. (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307, 922–925 PubMed

Griffitts J. S., Whitacre J. L., Stevens D. E., and Aroian R. V. (2001) Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293, 860–864 PubMed

Han R., and Ehlers R. U. (2000) Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J. Invertebr. Pathol. 75, 55–58 PubMed

Hunter S. W., Fujiwara T., and Brennan P. J. (1982) Structure and antigenicity of the major specific glyco lipid antigen of Mycobacterium leprae. J. Biol. Chem. 257, 15072–15078 PubMed

Kondakov N. N., Mel'nikova T. M., Chekryzhova T. V., Mel'nikova M. V., Zinin I., Torgov V. I., Chizhov A. O., and Kononov L. O. (2015) Synthesis of a disaccharide of phenolic glycolipid from Mycobacterium leprae (PGL-I) and its conjugates with bovine serum albumin. Russ. Chem. Bull. 64, 1142–1148

Staudacher E. (2012) Methylation: an uncommon modification of glycans. Biol. Chem. 393, 675–685 PubMed PMC

Wohlschlager T., Butschi A., Grassi P., Sutov G., Gauss R., Hauck D., Schmieder S. S., Knobel M., Titz A., Dell A., Haslam S. M., Hengartner M. O., Aebi M., and Künzler M. (2014) Methylated glycans as conserved targets of animal and fungal innate defense. Proc. Natl. Acad. Sci. U.S.A. 111, E2787–E2796 PubMed PMC

Wimmerova M., Mitchell E., Sanchez J. F., Gautier C., and Imberty A. (2003) Crystal structure of fungal lectin: six-bladed β-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J. Biol. Chem. 278, 27059–27067 PubMed

Cioci G., Mitchell E. P., Chazalet V., Debray H., Oscarson S., Lahmann M., Gautier C., Breton C., Perez S., and Imberty A. (2006) β-Propeller crystal structure of Psathyrella velutina lectin: an integrin-like fungal protein interacting with monosaccharides and calcium. J. Mol. Biol. 357, 1575–1591 PubMed

Kostlánová N., Mitchell E. P., Lortat-Jacob H., Oscarson S., Lahmann M., Gilboa-Garber N., Chambat G., Wimmerová M., and Imberty A. (2005) The fucose-binding lectin from Ralstonia solanacearum: a new type of β-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J. Biol. Chem. 280, 27839–27849 PubMed

Hao Y.-J., Montiel R., Lucena M. A., Costa M., and and Simoes N. (2012) Genetic diversity and comparative analysis of gene expression between Heterorhabditis bacteriophora Az29 and Az36 isolates: uncovering candidate genes involved in insect pathogenicity. Exp. Parasitol. 130, 116–125 PubMed

ffrench-Constant R. H., Dowling A., and Waterfield N. R. (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49, 436–451 PubMed

Li Y., Hu X., Zhang X Liu Z., Ding X., Xia L., and Hu S. (2014) Photorhabdus luminescens PirAB-fusion protein exhibits both cytotoxicity and insecticidal activity. FEMS Microbiol. Lett. 356, 23–31 PubMed

Fröbius A. C., Kanost M. R., Götz P., and Vilcinskas A. (2000) Isolation and characterization of novel inducible serine protease inhibitors from larval hemolymph of the greater wax moth Galleria mellonella. Eur. J. Biochem. 267, 2046–2053 PubMed

Glatz R., Roberts H. L. S., Li D., Sarjan M., Theopold U. H., Asgari S., and Schmidt O. (2004) Lectin-induced haemocyte inactivation in insects. J. Insect Physiol. 50, 955–963 PubMed

Beckage N. E., and Gelman D. B. (2004) Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol. 49, 299–330 PubMed

Eisemann C. H., Donaldson R. A., Pearson R. D., Cadogan L. C., Vacuolo T., and Tellam R. L. (1994) Larvicidal activity of lectins on Lucilia cuprina: mechanism of action. Entomol. Exp. Appl. 72, 1–10

Oliveira C. F. R., Luz L. A., Paiva P. M. G., Coelho L. C. B. B., Marangoni S., and Macedo M. L. R. (2011) Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects. Process Biochem. 46, 498–504

Browne N., Heelan M., and Kavanagh K. (2013) An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4, 597–603 PubMed PMC

Cochran J. R., Aivazian D., Cameron T. O., and Stern L. J. (2001) Receptor clustering and transmembrane signaling in T cells. Trends Biochem. Sci. 26, 304–310 PubMed

Conway E. M., Nowakowski B., and Steiner-Mosonyi M. (1994) Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J. Cell Physiol. 158, 285–298 PubMed

Muro S., Wiewrodt R., Thomas A., Koniaris L., Albelda S. M., Muzykantov V. R., and Koval M. (2003) A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J. Cell Sci. 116, 1599–1609 PubMed

Sharon N., and Lis H. (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R–62R PubMed

Bandyopadhyay S., Roy A., and Das S. (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci. 161, 1025–1033

Campbell L. R., and Gaugler R. (1992) Effect of exsheathment on motility and pathogenicity of two entomopathogenic nematode species. J. Nematol. 24, 365–370 PubMed PMC

Peters A., Gouge D. H., Ehlers R., and Hague N. G. M. (1997) Avoidance of encapsulation by Heterorhabditis spp. infecting larvae of Tipula oleracea. J. Invertebr. Pathol. 70, 161–164 PubMed

Bleuler-Martínez S., Butschi A., Garbani M., Wälti M. A., Wohlschlager T., Potthoff E., Sabotiĉ J., Pohleven J., Lüthy P., Hengartner M. O., Aebi M., and Künzler M. (2011) A lectin-mediated resistance of higher fungi against predators and parasites. Mol. Ecol. 20, 3056–3070 PubMed

Amano K., Katayama H., Saito A., Ando A., and Nagata Y. (2012) Aleuria aurantia lectin exhibits antifungal activity against Mucor racemosus. Biosci. Biotechnol. Biochem. 76, 967–970 PubMed

Ciche T. A., Kim K. S., Kaufmann-Daszczuk B., Nguyen K. C., and Hall D. H. (2008) Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora Nematodes. Appl. Environ. Microbiol. 74, 2275–2287 PubMed PMC

Shevchenko A., Wilm M., Vorm O., and Mann M. (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem. 68, 850–858 PubMed

Vojtek L., Dobeš P., Büyükgüzel E., Atosuo J., and Hyršl P. (2014) Bioluminescent assay for evaluating antimicrobial activity in insect haemolymph. Eur. J. Entomol. 111, 335–340

Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U.S.A. 76, 4350–4354 PubMed PMC

Wiseman T., Williston S., Brandts J. F., and Lin L. N. (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 PubMed

Schuck P. (2000) Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 PubMed PMC

Marchetti R., Malinovska L., Lameignère E., Adamova L., de Castro C., Cioci G., Stanetty C., Kosma P., Molinaro A., Wimmerova M., Imberty A., and Silipo A. (2012) Burkholderia cenocepacia lectin A binding to heptoses from the bacterial lipopolysaccharide. Glycobiology 22, 1387–1398 PubMed

Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 PubMed

Weber K., and Osborn M. (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406–4412 PubMed

Kabsch W. (2010) XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 PubMed PMC

Winn M. D., Ballard C. C., Cowtan K. D., Dodson E. J., Emsley P., Evans P. R., Keegan R. M., Krissinel E. B., Leslie A. G. W., McCoy A., McNicholas S. J., Murshudov G. N., Pannu N. S., Potterton E. A., Powell H. R., et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 PubMed PMC

Mueller U., Darowski N., Fuchs M. R., Förster R., Hellmig M., Paithankar K. S., Pühringer S., Steffien M., Zocher G., and Weiss M. S. (2012) Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 19, 442–449 PubMed PMC

Krug M., Weiss M. S., Heinemann U., and Mueller U. (2012) XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Cryst. 45, 568–572

Pape T., and Schneider T. R. (2004) HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Cryst. 37, 843–844

Langer G., Cohen S. X., Lamzin V. S., and Perrakis A. (2008) Automated macromolecular model-building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 PubMed PMC

Vagin A., and Teplyakov A. (2010) Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 PubMed

Vagin A. A., Steiner R. S., Lebedev A. A., Potterton L., McNicholas S., Long F., and Murshudov G. N. (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2284–2295 PubMed

Emsley P., Lohkamp B., Scott W. G., and Cowtan K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 PubMed PMC

Chen V. B., Arendall W. B. 3rd, Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., Murray L. W., Richardson J. S., and Richardson D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 PubMed PMC

Haydak M. H. (1936) A food for rearing laboratory animals. J. Econ. Entomol. 29, 1026

Zobrazit více v PubMed

PDB
5C9L, 5C9O, 5C9P

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...