The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: findings from an international multicentre registry
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, multicentrická studie, pozorovací studie
Grantová podpora
R01 HL108173
NHLBI NIH HHS - United States
PubMed
28158428
PubMed Central
PMC6059141
DOI
10.1093/europace/euw389
PII: 2965069
Knihovny.cz E-zdroje
- MeSH
- dědičnost MeSH
- dítě MeSH
- fenotyp MeSH
- genetická predispozice k nemoci MeSH
- genetické markery MeSH
- kalsekvestrin genetika MeSH
- komorová tachykardie diagnóza genetika mortalita patofyziologie MeSH
- konformace proteinů MeSH
- lidé MeSH
- mladiství MeSH
- molekulární modely MeSH
- mutace * MeSH
- mutační analýza DNA MeSH
- náhlá srdeční smrt epidemiologie MeSH
- prognóza MeSH
- registrace MeSH
- retrospektivní studie MeSH
- rizikové faktory MeSH
- rodokmen MeSH
- ryanodinový receptor vápníkového kanálu chemie genetika metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
- Názvy látek
- CASQ2 protein, human MeSH Prohlížeč
- genetické markery MeSH
- kalsekvestrin MeSH
- ryanodinový receptor vápníkového kanálu MeSH
- RyR2 protein, human MeSH Prohlížeč
AIMS: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an ion channelopathy characterized by ventricular arrhythmia during exertion or stress. Mutations in RYR2-coded Ryanodine Receptor-2 (RyR2) and CASQ2-coded Calsequestrin-2 (CASQ2) genes underlie CPVT1 and CPVT2, respectively. However, prognostic markers are scarce. We sought to better characterize the phenotypic and genotypic spectrum of CPVT, and utilize molecular modelling to help account for clinical phenotypes. METHODS AND RESULTS: This is a Pediatric and Congenital Electrophysiology Society multicentre, retrospective cohort study of CPVT patients diagnosed at <19 years of age and their first-degree relatives. Genetic testing was undertaken in 194 of 236 subjects (82%) during 3.5 (1.4-5.3) years of follow-up. The majority (60%) had RyR2-associated CPVT1. Variant locations were predicted based on a 3D structural model of RyR2. Specific residues appear to have key structural importance, supported by an association between cardiac arrest and mutations in the intersubunit interface of the N-terminus, and the S4-S5 linker and helices S5 and S6 of the RyR2 C-terminus. In approximately one quarter of symptomatic patients, cardiac events were precipitated by only normal wakeful activities. CONCLUSION: This large, multicentre study identifies contemporary challenges related to the diagnosis and prognostication of CPVT patients. Structural modelling of RyR2 can improve our understanding severe CPVT phenotypes. Wakeful rest, rather than exertion, often precipitated life-threatening cardiac events.
BC Inherited Arrhythmia Program 211 1033 Davie St Vancouver BC V6E 1M7 Canada
Department of Pediatrics A 1 DuPont Hospital For Children 1600 Rockland Rd Wilmington DE 19803 USA
Department of Pediatrics University of Colorado 13123 East 16th Avenue Aurora CO 80045 USA
Department of Pediatrics University of Louisville 601 S Floyd St 602 Louisville KY 40208 USA
Department of Pediatrics University of Rochester 601 Elmwood Ave Box 631 Rochester NY 14642 USA
Department of Pediatrics University of Utah 81 N Mario Capecchi Drive Salt Lake City UT 84113 USA
Department of Pediatrics University of Washington 4800 Sand Point Way NE Seattle WA 98105 USA
Nicklaus Children's Hospital 3100 SW 62 Ave Cardiology ACB 2nd Floor Miami FL 33155 USA
Providence Sacred Heart Children's Hospital 101 W 8th Ave Suite 4300E Spokane WA 99204 USA
Zobrazit více v PubMed
Leenhardt A, Lucet V, Denjoy I, Grau F, Do Ngoc D, Coumel P.. Catecholaminergic polymorphic ventricular tachycardia in children: a 7-year follow-up of 21 patients. Circulation 1995;91:1512–9. PubMed
Priori S, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001;103:196–200. PubMed
Hayashi M, Denjoy I, Extramiana F, Maltret A, Roux-Buisson N, Lupoglazoff J. et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation 2009;119:2426–34. PubMed
Priori S, Chen S.. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res 2011;108:871–83. PubMed PMC
Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O. et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 2001;69:1378–84. PubMed PMC
Van der Werf C, Nederend I, Hofman N, van Geloven N, Ebink C, Frohn-Mulder I. et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 2012;5:748–56. PubMed
Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C. et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace 2013;15:1389–406. PubMed
Roston T, Vinocur J, Maginot K, Mohammed S, Salerno J, Etheridge S. et al. Catecholaminergic polymorphic ventricular tachycardia in children: an analysis of therapeutic strategies and outcomes from an international multicenter registry. Circ Arrhythm Electrophysiol 2015;8:633–42. PubMed PMC
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG.. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–81. PubMed PMC
Borko L, Bauerova-Hlinkova V, Hostinova E, Gasperik J, Beck K, Lai FA. et al. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias. Acta Crystallogr D Biol Crystallogr 2014;70(Pt 11):2897–912. PubMed PMC
Yuchi Z, Yuen SM, Lau K, Underhill AQ, Cornea RL, Fessenden JD. et al. Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant. Nat Commun 2015;6:7947. PubMed PMC
Lau K, Van Petegem F.. Crystal structures of wild type and disease mutant forms of the ryanodine receptor SPRY2 domain. Nat Commun 2014;5:5397. PubMed
Yuchi Z, Lau K, Van Petegem F.. Disease mutations in the ryanodine receptor central region: crystal structures of a phosphorylation hot spot domain. Structure 2012;20:1201–11. PubMed
Yan Z, Bai XC, Yan C, Wu J, Li Z, Xie T. et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 2015;517:50–5. PubMed PMC
Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, Hofman N, Bikker H, van Tintelen JP. et al. The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J Am Coll Cardiol 2009;54:2065–74. PubMed PMC
Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M. et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002;106:69–74. PubMed
Sali A, Blundell TL.. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993;234:779–815. PubMed
Van Petegem F. Ryanodine receptors: allosteric ion channel giants. J Mol Biol 2015;427:31–53. PubMed
Blunck R, Batulan Z.. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol 2012;3:166. PubMed PMC
Kimlicka L, Lau K, Tung CC, Van Petegem F.. Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface. Nat Commun 2013;4:1506. PubMed PMC
Bauce B, Rampazzo A, Basso C, Bagattin A, Daliento L, Tiso N. et al. Screening for ryanodine receptor type 2 mutations in families with effort-induced polymorphic ventricular arrhythmias and sudden death: early diagnosis of asymptomatic carriers. J Am Coll Cardiol 2002;40:341–9. PubMed
Kimlicka L, Tung CC, Carlsson AC, Lobo PA, Yuchi Z, Van Petegem F.. The cardiac ryanodine receptor N-terminal region contains an anion binding site that is targeted by disease mutations. Structure 2013;21:1440–9. PubMed
Tung CC, Lobo PA, Kimlicka L, Van Petegem F.. The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 2010;468:585–8. PubMed
Jiang D, Chen W, Wang R, Zhang L, Chen SR.. Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. Proc Natl Acad Sci USA 2007;104:18309–14. PubMed PMC
Gray B, Bagnall RD, Lam L, Ingles J, Turner C, Haan E. et al. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2016;13:1652–60. PubMed PMC