Agar-degrading bacteria isolated from Antarctic macroalgae
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
28283945
DOI
10.1007/s12223-017-0511-1
PII: 10.1007/s12223-017-0511-1
Knihovny.cz E-resources
- MeSH
- Agar metabolism MeSH
- Bacteria classification genetics isolation & purification metabolism MeSH
- Pigments, Biological analysis MeSH
- DNA, Bacterial chemistry genetics MeSH
- Seaweed microbiology MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Antarctic Regions MeSH
- Names of Substances
- Agar MeSH
- Pigments, Biological MeSH
- DNA, Bacterial MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 16S MeSH
This study describes the taxonomic diversity of pigmented, agar-degrading bacteria isolated from the surface of macroalgae collected in King George Island, Antarctica. A total of 30 pigmented, agarolytic bacteria were isolated from the surface of the Antarctic macroalgae Adenocystis utricularis, Monostroma hariotii, Iridaea cordata, and Pantoneura plocamioides. Based on the 16S rRNA data, the agarolytic isolates were affiliated to the genera Algibacter, Arthrobacter, Brachybacterium, Cellulophaga, Citricoccus, Labedella, Microbacterium, Micrococcus, Salinibacterium, Sanguibacter, and Zobellia. Isolates phylogenetically related to Cellulophaga algicola showed the highest agarase activity in culture supernatants when tested at 4 and 37 °C. This is the first investigation of pigmented agar-degrading bacteria, members of microbial communities associated with Antarctic macroalgae, and the results suggest that they represent a potential source of cold-adapted agarases of possible biotechnological interest.
See more in PubMed
Biomed Res Int. 2014;2014:512497 PubMed
J Bacteriol. 2012 Jan;194(1):142-9 PubMed
J Biosci Bioeng. 2014 Aug;118(2):125-9 PubMed
FEMS Microbiol Lett. 2015 Dec;362(24):fnv206 PubMed
FEMS Microbiol Ecol. 2005 Oct 1;54(2):257-67 PubMed
Nature. 2010 Apr 8;464(7290):908-12 PubMed
FEMS Microbiol Ecol. 2005 Oct 1;54(2):269-80 PubMed
FEMS Microbiol Ecol. 2002 Jul 1;41(1):47-58 PubMed
PLoS One. 2016 Mar 25;11(3):e0151883 PubMed
Evid Based Complement Alternat Med. 2011;2011:670349 PubMed
FEMS Microbiol Ecol. 2006 Jul;57(1):92-105 PubMed
Appl Microbiol Biotechnol. 2001 Sep;56(5-6):750-6 PubMed
Int J Syst Evol Microbiol. 2000 Sep;50 Pt 5:1861-8 PubMed
FEMS Microbiol Ecol. 2005 Aug 1;53(3):379-91 PubMed
Microb Ecol. 2004 Nov;48(4):449-62 PubMed
Braz J Microbiol. 2015 Jul 01;46(3):683-90 PubMed
Appl Microbiol Biotechnol. 2012 May;94(4):917-30 PubMed
Curr Microbiol. 2009 Nov;59(5):537-47 PubMed
Res Microbiol. 2009 Oct;160(8):538-46 PubMed
Folia Microbiol (Praha). 2012 Sep;57(5):379-86 PubMed
Res Microbiol. 2013 Jan;164(1):83-9 PubMed
Mar Drugs. 2007 Dec 18;5(4):220-41 PubMed
Prikl Biokhim Mikrobiol. 2006 Sep-Oct;42(5):552-9 PubMed
Int J Syst Evol Microbiol. 2004 Jul;54(Pt 4):1257-61 PubMed
Int J Syst Evol Microbiol. 2012 Mar;62(Pt 3):716-21 PubMed
FEMS Microbiol Ecol. 2004 May 1;48(2):157-67 PubMed
World J Microbiol Biotechnol. 2014 Jun;30(6):1869-78 PubMed
Appl Microbiol Biotechnol. 2014 Apr;98(7):2917-35 PubMed
FEMS Microbiol Ecol. 2011 Jun;76(3):401-12 PubMed
Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1643-8 PubMed
J Biosci Bioeng. 2003;95(4):328-34 PubMed