Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
28427151
PubMed Central
PMC5471063
DOI
10.18632/oncotarget.15697
PII: 15697
Knihovny.cz E-zdroje
- Klíčová slova
- miRNA, phosphorylation, ubiquitination, sumoylation, VDRB1, VDRA,
- MeSH
- fosforylace MeSH
- genetická transkripce MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- posttranslační úpravy proteinů * MeSH
- receptory kalcitriolu genetika metabolismus MeSH
- regulace genové exprese MeSH
- sumoylace MeSH
- ubikvitinace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA MeSH
- MIRN125 microRNA, human MeSH Prohlížeč
- MIRN27 microRNA, human MeSH Prohlížeč
- receptory kalcitriolu MeSH
- VDR protein, human MeSH Prohlížeč
Vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily of ligand-activated transcription factors. Activated VDR is responsible for maintaining calcium and phosphate homeostasis, and is required for proper cellular growth, cell differentiation and apoptosis. The expression of both phases I and II drug-metabolizing enzymes is also regulated by VDR, therefore it is clinically important.Post-translational modifications of NRs have been known as an important mechanism modulating the activity of NRs and their ability to drive the expression of target genes. The aim of this mini review is to summarize the current knowledge about post-transcriptional and post-translational modifications of VDR.
Department of Cell Biology and Genetics Faculty of Science Palacky University Olomouc Czech Republic
Zobrazit více v PubMed
Haussler MR, Norman AW. Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci U S A. 1969;62:155–62. PubMed PMC
Barsony J, Renyi I, McKoy W. Subcellular distribution of normal and mutant vitamin D receptors in living cells. Studies with a novel fluorescent ligand. J Biol Chem. 1997;272:5774–82. PubMed
Wu-Wong JR, Nakane M, Ma J, Dixon D, Gagne G. Vitamin D receptor (VDR) localization in human promyelocytic leukemia cells. Leuk Lymphoma. 2006;47:727–32. doi: 10.1080/10428190500398898. PubMed DOI
Taymans SE, Pack S, Pak E, Orban Z, Barsony J, Zhuang Z, Stratakis CA. The human vitamin D receptor gene (VDR) is localized to region 12cen-q12 by fluorescent in situ hybridization and radiation hybrid mapping: genetic and physical VDR map. J Bone Miner Res. 1999;14:1163–6. doi: 10.1359/jbmr.1999.14.7.1163. PubMed DOI
Crofts LA, Hancock MS, Morrison NA, Eisman JA. Multiple promoters direct the tissue-specific expression of novel N-terminal variant human vitamin D receptor gene transcripts. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:10529–34. doi: 10.1073/pnas.95.18.10529. PubMed DOI PMC
Li YC, Zhu JJ, Gao CH, Peng BG. Vitamin D Receptor (VDR) Genetic Polymorphisms Associated with Intervertebral Disc Degeneration. Journal of Genetics and Genomics. 2015;42:135–40. doi: 10.1016/j.jgg.2015.03.006. PubMed DOI
Jehan F, d'Alesio A, Garabedian M. Exons and functional regions of the human vitamin D receptor gene around and within the main 1a promoter are well conserved among mammals. Journal of Steroid Biochemistry and Molecular Biology. 2007;103:361–7. doi: 10.1016/j.jsbmb.2006.12.057. PubMed DOI
Sunn KL, Cock TA, Crofts LA, Eisman JA, Gardiner EM. Novel N-terminal variant of human VDR. Molecular Endocrinology. 2001;15:1599–609. doi: 10.1210/Me.15.9.1599. PubMed DOI
Esteban LM, Fong C, Amr D, Cock TA, Allison SJ, Flanagan JL, Liddle C, Eisman JA, Gardiner EM. Promoter-, cell-, and ligand-specific transactivation responses of the VDRB1 isoform. Biochemical and Biophysical Research Communications. 2005;334:9–15. doi: 10.1016/j.bbrc.2005.06.054. PubMed DOI
Gardiner EM, Esteban LM, Fong C, Allison SJ, Flanagan JL, Kouzmenko AP, Eisman JA. Vitamin D receptor B1 and exon 1d: functional and evolutionary analysis. Journal of Steroid Biochemistry and Molecular Biology. 2004. pp. 89–90.pp. 233–8. PubMed DOI
Jurutka PW, Remus LS, Whitfield GK, Thompson PD, Hsieh JC, Zitzer H, Tavakkoli P, Galligan MA, Dang HT, Haussler CA, Haussler MR. The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol. 2000;14:401–20. doi: 10.1210/mend.14.3.0435. PubMed DOI
Holick MF. Vitamin D: a D-Lightful health perspective. Nutrition Reviews. 2008;66:S182–S94. doi: 10.1111/j.1753-4887.2008.00104.x. PubMed DOI
Zhu JG, DeLuca HF. Vitamin D 25-hydroxylase - Four decades of searching, are we there yet? Archives of Biochemistry and Biophysics. 2012;523:30–6. doi: 10.1016/j.abb.2012.01.013. PubMed DOI
Simpson RU. Selective Knockout of the Vitamin D Receptor in the Heart Results in Cardiac Hypertrophy Is the Heart a Drugable Target for. Vitamin D Receptor Agonists? Circulation. 2011;124:1808–10. doi: 10.1161/Circulationaha.111.061234. PubMed DOI PMC
Trang HM, Cole DEC, Rubin LA, Pierratos A, Siu S, Vieth R. Evidence that vitamin D-3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D-2. American Journal of Clinical Nutrition. 1998;68:854–8. PubMed
Holick MF, Biancuzzo RM, Chen TC, Klein EK, Young A, Bibuld D, Reitz R, Salameh W, Ameri A, Tannenbaum AD. Vitamin D-2 is as effective as vitamin D-3 in maintaining circulating concentrations of 25-hydroxyvitamin D. Journal of Clinical Endocrinology & Metabolism. 2008;93:677–81. doi: 10.1210/jc.2007-2308. PubMed DOI PMC
Tsugawa N, Nakagawa K, Kawamoto Y, Tachibana Y, Hayashi T, Ozono K, Okano T. Biological activity profiles of 1 alpha,25-dihydroxyvitamin D-2, D-3, D-4, D-7 and 24-epi-1 alpha,25-dihydroxyvitamin D-2. Biological & Pharmaceutical Bulletin. 1999;22:371–7. PubMed
Bartonkova I, Grycova A, Dvorak Z. Profiling of Vitamin D Metabolic Intermediates toward VDR Using Novel Stable Gene Reporter Cell Lines IZ-VDRE and IZ-CYP24. Chemical Research in Toxicology. 2016;29:1211–22. doi: 10.1021/acs.chemrestox.6b00170. PubMed DOI
Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005;289:F8–28. doi: 10.1152/ajprenal.00336.2004. PubMed DOI
Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91:1255–60. doi: 10.3945/ajcn.2009.29094. PubMed DOI
Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S, Garland CF, Giovannucci E. Epidemic influenza and vitamin. D. Epidemiol Infect. 2006;134:1129–40. doi: 10.1017/S0950268806007175. PubMed DOI PMC
Camargo CA JR, Ganmaa D, Frazier AL, Kirchberg FF, Stuart JJ, Kleinman K, Sumberzul N, Rich-Edwards JW. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics. 2012;130:e561–7. doi: 10.1542/peds.2011-3029. PubMed DOI
Selvaraj P, Harishankar M, Afsal K. Vitamin D : Immuno-modulation and tuberculosis treatment. Can J Physiol Pharmacol. 2015;93:377–84. doi: 10.1139/cjpp-2014-0386. PubMed DOI
Sonawane A, Santos JC, Mishra BB, Jena P, Progida C, Sorensen OE, Gallo R, Appelberg R, Griffiths G. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cellular Microbiology. 2011;13:1601–17. doi: 10.1111/j.1462-5822.2011.01644.x. PubMed DOI
von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nature Immunology. 2010;11:344–U56. doi: 10.1038/ni.1851. PubMed DOI
Halfon M, Phan O, Teta D. Vitamin D : a review on its effects on muscle strength, the risk of fall, and frailty. Biomed Res Int. 2015;2015:953241. doi: 10.1155/2015/953241. PubMed DOI PMC
Martin EN, Haney EM, Shannon J, Cauley JA, Ensrud KE, Keaveny TM, Zmuda JM, Orwoll ES, Harrison SL, Marshall LM. Femoral Volumetric Bone Density, Geometry, and Strength in Relation to 25-Hydroxy Vitamin D in Older Men. Journal of Bone and Mineral Research. 2015;30:475–82. doi: 10.1002/jbmr.2360. PubMed DOI PMC
Swami S, Krishnan AV, Wang JY, Jensen K, Horst R, Albertelli MA, Feldman D. Dietary Vitamin D-3 and 1,25-Dihydroxyvitamin D-3 (Calcitriol) Exhibit Equivalent Anticancer Activity in Mouse Xenograft Models of Breast and Prostate Cancer. Endocrinology. 2012;153:2576–87. doi: 10.1210/en.2011-1600. PubMed DOI PMC
Wang JY, Swami S, Krishnan AV, Feldman D. Combination of calcitriol and dietary soy exhibits enhanced anticancer activity and increased hypercalcemic toxicity in a mouse xenograft model of prostate cancer. Prostate. 2012;72:1628–37. doi: 10.1002/pros.22516. PubMed DOI PMC
Harputluoglu H, Dizdar O, Karaahmet F, Altundag K. Vitamin D intake may be effective in the management of triple-negative breast cancer. Journal of Buon. 2011;16:569. PubMed
Fang Y, van Meurs JBJ, d'Alesio A, Jhamai M, Zhao HY, Rivadeneira F, Hofman A, van Leeuwen JPT, Jehan F, Pols HAP, Uitterlinden AG. Promoter and 3 ‘-untranslated-region haplotypes in the vitamin D receptor gene predispose to osteoporotic fracture: The Rotterdam study. American Journal of Human Genetics. 2005;77:807–23. doi: 10.1086/497438. PubMed DOI PMC
Chantarangsu S, Sura T, Mongkornkarn S, Donsakul K, Torrungruang K. Vitamin D Receptor Gene Polymorphism and Smoking in the Risk of Chronic Periodontitis. J Periodontol. 2016. pp. 1–13. PubMed DOI
Nieto G, Barber Y, Rubio MC, Rubio M, Fibla J. Association between AIDS disease progression rates and the Fok-I polymorphism of the VDR gene in a cohort of HIV-1 seropositive patients. Journal of Steroid Biochemistry and Molecular Biology. 2004. pp. 89–90.pp. 199–207. PubMed DOI
van Etten E, Verlinden L, Giulietti A, Ramos-Lopez E, Branisteanu DD, Ferreira GB, Overbergh L, Verstuyf A, Bouillon R, Roep BO, Badenhoop K, Mathieu C. The vitamin D receptor gene FokI polymorphism: functional impact on the immune system. Eur J Immunol. 2007;37:395–405. doi: 10.1002/eji.200636043. PubMed DOI
Verone-Boyle AR, Shoemaker S, Attwood K, Morrison CD, Makowski AJ, Battaglia S, Hershberger PA. Diet-derived 25-hydroxyvitamin D3 activates vitamin D receptor target gene expression and suppresses EGFR mutant non-small cell lung cancer growth in vitro and in vivo. Oncotarget. 2016;7:995–1013. doi: 10.18632/oncotarget.6493. PubMed DOI PMC
Shao T, Klein P, Grossbard ML. Vitamin D and breast cancer. Oncologist. 2012;17:36–45. PubMed PMC
Kang SS, Zhao YS, Liu J, Wang L, Zhao G, Chen X, Yao AL, Zhang LG, Zhang XJ, Li XQ. Association of Vitamin D receptor Fok I polymorphism with the risk of prostate cancer: a meta-analysis. Oncotarget. 2016;7:77878–89. doi: 10.18632/oncotarget.12837. PubMed DOI PMC
Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5. doi: 10.1038/nature02871. PubMed DOI
De Santa F, Iosue I, Del Rio A, Fazi F. microRNA Biogenesis Pathway as a Therapeutic Target for Human Disease and Cancer. Current Pharmaceutical Design. 2013;19:745–64. PubMed
Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T. MicroRNA regulates human vitamin D receptor. International Journal of Cancer. 2009;125:1328–33. doi: 10.1002/ijc.24459. PubMed DOI
Negrini M, Rasio D, Hampton GM, Sabbioni S, Rattan S, Carter SL, Rosenberg AL, Schwartz GF, Shiloh Y, Cavenee WK, Croce CM. Definition and Refinement of Chromosome-11 Regions of Loss of Heterozygosity in Breast-Cancer - Identification of a New Region at 11q23.3. Cancer Research. 1995;55:3003–7. PubMed
Rasio D, Negrini M, Manenti G, Dragani TA, Croce CM. Loss of Heterozygosity at Chromosome-11q in Lung Adenocarcinoma - Identification of 3 Independent Regions. Cancer Research. 1995;55:3988–91. PubMed
Yamada H, Yanagisawa K, Tokumaru S, Taguchi A, Nimura Y, Osada H, Nagino M, Takahashi T. Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes & Cancer. 2008;47:810–8. doi: 10.1002/gcc.20582. PubMed DOI
Komagata S, Nakajima M, Takagi S, Mohri T, Taniya T, Yokoi T. Human CYP24 Catalyzing the Inactivation of Calcitriol Is Post-Transcriptionally Regulated by miR-125b. Molecular Pharmacology. 2009;76:702–9. doi: 10.1124/mol.109.056986. PubMed DOI
Li F, Zhang A, Shi Y, Ma Y, Du Y. 1alpha,25-Dihydroxyvitamin D3 prevents the differentiation of human lung fibroblasts via microRNA-27b targeting the vitamin D receptor. Int J Mol Med. 2015;36:967–74. doi: 10.3892/ijmm.2015.2318. PubMed DOI PMC
Gonzalez-Duarte RJ, Cazares-Ordonez V, Romero-Cordoba S, Diaz L, Ortiz V, Freyre-Gonzalez JA, Hidalgo-Miranda A, Larrea F, Avila E. Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells. Biochem Cell Biol. 2015;93:376–84. doi: 10.1139/bcb-2015-0010. PubMed DOI
Ozkan B, Hatun S, Bereket A. Vitamin D intoxication. Turkish Journal of Pediatrics. 2012;54:93–8. PubMed
Burnett G, Kennedy EP. The enzymatic phosphorylation of proteins. J Biol Chem. 1954;211:969–80. PubMed
Bodwell JE, Orti E, Coull JM, Pappin DJ, Smith LI, Swift F. Identification of phosphorylated sites in the mouse glucocorticoid receptor. J Biol Chem. 1991;266:7549–55. PubMed
Auricchio F, Migliaccio A, Castoria G, Rotondi A, Lastoria S. Direct evidence of in vitro phosphorylation-dephosphorylation of the estradiol-17 beta receptor. Role of Ca2+-calmodulin in the activation of hormone binding sites. J Steroid Biochem. 1984;20:31–5. PubMed
Goldberg Y, Glineur C, Gesquiere JC, Ricouart A, Sap J, Vennstrom B, Ghysdael J. Activation of Protein Kinase-C or Camp-Dependent Protein-Kinase Increases Phosphorylation of the C-Erba-Encoded Thyroid-Hormone Receptor and of the V-Erba-Encoded Protein. Embo Journal. 1988;7:2425–33. PubMed PMC
Pike JW, Sleator NM. Hormone-Dependent Phosphorylation of the 1,25-Dihydroxyvitamin D3 Receptor in Mouse Fibroblasts. Biochemical and Biophysical Research Communications. 1985;131:378–85. PubMed
Brown TA, Deluca HF. Phosphorylation of the 1,25-Dihydroxyvitamin-D3 Receptor - a Primary Event in 1,25-Dihydroxyvitamin-D3 Action. Journal of Biological Chemistry. 1990;265:10025–9. PubMed
Hsieh JC, Jurutka PW, Galligan MA, Terpening CM, Haussler CA, Samuels DS, Shimizu Y, Shimizu N, Haussler MR. Human Vitamin-D Receptor Is Selectively Phosphorylated by Protein-Kinase-C on Serine-51, a Residue Crucial to Its Transactivation Function. Proceedings of the National Academy of Sciences of the United States of America. 1991;88:9315–9. doi: 10.1073/pnas.88.20.9315. PubMed DOI PMC
Hsieh JC, Jurutka PW, Nakajima S, Galligan MA, Haussler CA, Shimizu Y, Shimizu N, Whitfield GK, Haussler MR. Phosphorylation of the Human Vitamin-D Receptor by Protein-Kinase-C - Biochemical and Functional-Evaluation of the Serine-51 Recognition Site. Journal of Biological Chemistry. 1993;268:15118–26. PubMed
Obeid LM, Okazaki T, Karolak LA, Hannun YA. Transcriptional regulation of protein kinase C by 1,25-dihydroxyvitamin D3 in HL-60 cells. J Biol Chem. 1990;265:2370–4. PubMed
Jurutka PW, Hsieh JC, Macdonald PN, Terpening CM, Haussler CA, Haussler MR, Whitfield GK. Phosphorylation of Serine-208 in the Human Vitamin-D Receptor - the Predominant Amino-Acid Phosphorylated by Casein Kinase-Ii, Invitro, and Identification as a Significant Phosphorylation Site in Intact-Cells. Journal of Biological Chemistry. 1993;268:6791–9. PubMed
Hilliard GM, Cook RG, Weigel NL, Pike JW. 1,25-Dihydroxyvitamin-D(3) Modulates Phosphorylation of Serine-205 in the Human Vitamin-D Receptor - Site-Directed Mutagenesis of This Residue Promotes Alternative Phosphorylation. Biochemistry. 1994;33:4300–11. doi: 10.1021/Bi00180a026. PubMed DOI
Jurutka PW, Hsieh JC, Nakajima S, Haussler CA, Whitfield GK, Haussler MR. Human vitamin D receptor phosphorylation by casein kinase II at Ser-208 potentiates transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:3519–24. doi: 10.1073/pnas.93.8.3519. PubMed DOI PMC
Barletta F, Freedman LP, Christakos S. Enhancement of VDR-mediated transcription by phosphorylation: Correlation with increased interaction between the VDR and DRIP205, a subunit of the VDR-interacting protein coactivator complex. Molecular Endocrinology. 2002;16:301–14. doi: 10.1210/Me.16.2.301. PubMed DOI
Arriagada G, Paredes R, Olate J, van Wijnen A, Lian JB, Stein GS, Stein JL, Onate S, Montecino M. Phosphorylation at serine 208 of the 1alpha,25-dihydroxy Vitamin D3 receptor modulates the interaction with transcriptional coactivators. J Steroid Biochem Mol Biol. 2007;103:425–9. doi: 10.1016/j.jsbmb.2006.12.021. PubMed DOI PMC
Jurutka PW, Hsieh JC, Haussler MR. Phosphorylation of the human 1,25-dihydroxyvitamin D3 receptor by cAMP-dependent protein kinase, in vitro, and in transfected COS-7 cells. Biochem Biophys Res Commun. 1993;191:1089–96. doi: 10.1006/bbrc.1993.1328. PubMed DOI
Nakajima S, Yamagata M, Sakai N, Ozono K. Effect of cyclic adenosine 3’,5’-monophosphate and protein kinase A on ligand-dependent transactivation via the vitamin D receptor. Mol Cell Endocrinol. 2000;159:45–51. PubMed
Hsieh JC, Dang HTL, Galligan MA, Whitfield GK, Haussler CA, Jurutka PW, Haussler MR. Phosphorylation of human vitamin D receptor serine-182 by PKA suppresses 1,25(OH)(2)D-3-dependent transactivation. Biochemical and Biophysical Research Communications. 2004;324:801–9. doi: 10.1016/j.bbrc.2004.09.139. PubMed DOI
Huening M, Yehia G, Molina CA, Christakos S. Evidence for a regulatory role of inducible cAMP early repressor in protein kinase A-mediated enhancement of vitamin D receptor expression and modulation of hormone action. Molecular Endocrinology. 2002;16:2052–64. doi: 10.1210/me.2001-0260. PubMed DOI
Ting HJ, Yasmin-Karim S, Yan SJ, Hsu JW, Lin TH, Zeng WS, Messing J, Sheu TJ, Bao BY, Li WX, Messing E, Lee YF. A Positive Feedback Signaling Loop between. ATM and the Vitamin D Receptor Is Critical for Cancer Chemoprevention by Vitamin D. Cancer Research. 2012;72:958–68. doi: 10.1158/0008-5472.CAN-11-0042. PubMed DOI PMC
Bi X, Shi Q, Zhang H, Bao Y, Hu D, Pohl N, Fang W, Dong H, Xia X, Fan D, Yang W. c-Jun NH2-teminal kinase 1 interacts with vitamin D receptor and affects vitamin D-mediated inhibition of cancer cell proliferation. J Steroid Biochem Mol Biol. 2016;163:164–72. doi: 10.1016/j.jsbmb.2016.05.009. PubMed DOI
Qi X, Pramanik R, Wang J, Schultz RM, Maitra RK, Han J, DeLuca HF, Chen G. The p38 and JNK pathways cooperate to trans-activate vitamin D receptor via c-Jun/AP-1 and sensitize human breast cancer cells to vitamin D(3)-induced growth inhibition. J Biol Chem. 2002;277:25884–92. doi: 10.1074/jbc.M203039200. PubMed DOI
Kayali AG, Austin DA, Webster NJ. Stimulation of MAPK cascades by insulin and osmotic shock: lack of an involvement of p38 mitogen-activated protein kinase in glucose transport in 3T3-L1 adipocytes. Diabetes. 2000;49:1783–93. PubMed
Dursun E, Gezen-Ak D, Yilmazer S. A Novel Perspective for Alzheimer's Disease: Vitamin D Receptor Suppression by Amyloid-beta and Preventing the Amyloid-beta Induced Alterations by Vitamin D in Cortical Neurons. Journal of Alzheimers Disease. 2011;23:207–19. doi: 10.3233/Jad-2010-101377. PubMed DOI
Ahn JH, So SP, Kim NY, Kim HJ, Yoon SY, Kim DH. c-Jun N-terminal Kinase (JNK) induces phosphorylation of amyloid precursor protein (APP) at Thr668, in okadaic acid-induced neurodegeneration. Bmb Reports. 2016;49:376–81. doi: 10.5483/BMBRep.2016.49.7.246. PubMed DOI PMC
Pickart CM. Targeting of substrates to the 268 proteasome. Faseb Journal. 1997;11:1055–66. PubMed
Masuyama H, MacDonald PN. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J Cell Biochem. 1998;71:429–40. PubMed
Sone T, Kerner S, Pike JW. Vitamin-D Receptor Interaction with Specific DNA - Association as a 1,25-Dihydroxyvitamin-D3-Modulated Heterodimer. Journal of Biological Chemistry. 1991;266:23296–305. PubMed
Ma Q, Baldwin KT. 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway - Role of the transcription activaton and DNA binding of AhR. Journal of Biological Chemistry. 2000;275:8432–8. doi: 10.1074/jbc.275.12.8432. PubMed DOI
Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW. Proteasome-dependent degradation of the human estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:1858–62. doi: 10.1073/pnas.96.5.1858. PubMed DOI PMC
Yokota K, Shibata H, Kobayashi S, Suda N, Murai A, Kurihara I, Saito I, Saruta T. Proteasome-mediated mineralocorticoid receptor degradation attenuates transcriptional response to aldosterone. Endocrine Research. 2004;30:611–6. doi: 10.1081/Erc-200043783. PubMed DOI
Li XY, Boudjelal M, Xiao JH, Peng ZH, Asuru A, Kang S, Fisher GJ, Voorhees JJ. 1,25-dihydroxyvitamin D-3 increases nuclear vitamin D-3 receptors by blocking ubiquitin/proteasome-mediated degradation in human skin. Molecular Endocrinology. 1999;13:1686–94. doi: 10.1210/me.13.10.1686. PubMed DOI
Peleg S, Nguyen CV. The Importance of Nuclear Import in Protection of the Vitamin D Receptor from Polyubiquitination and Proteasome-Mediated Degradation. Journal of Cellular Biochemistry. 2010;110:926–34. doi: 10.1002/jcb.22606. PubMed DOI
Kongsbak M, von Essen MR, Boding L, Levring TB, Schjerling P, Lauritsen JPH, Woetmann A, Odum N, Bonefeld CM, Geisler C. Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation in Human CD4(+) T Cells. Plos One. 2014;9 ARTNe9669510.1371/journal.pone.0096695. PubMed PMC
Chi Y, Hong Y, Zong H, Wang Y, Zou W, Yang J, Kong X, Yun X, Gu J. CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation. Biochem Biophys Res Commun. 2009;386:493–8. doi: 10.1016/j.bbrc.2009.06.061. PubMed DOI
Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol. 2014;21:927–36. doi: 10.1038/nsmb.2890. PubMed DOI PMC
Matunis MJ, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 1996;135:1457–70. PubMed PMC
Sentis S, Le Romancer M, Bianchin C, Rostan MC, Corbo L. Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity. Mol Endocrinol. 2005;19:2671–84. doi: 10.1210/me.2005-0042. PubMed DOI
Rytinki MM, Kaikkonen S, Sutinen P, Palvimo JJ. Analysis of androgen receptor SUMOylation. Methods Mol Biol. 2011;776:183–97. doi: 10.1007/978-1-61779-243-4_12. PubMed DOI
Hu G, Xu CS, Staudinger JL. Pregnane X Receptor Is SUMOylated to Repress the Inflammatory Response. Journal of Pharmacology and Experimental Therapeutics. 2010;335:342–50. doi: 10.1124/jpet.110.171744. PubMed DOI PMC
Ohshima T, Koga H, Shimotohno K. Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. Journal of Biological Chemistry. 2004;279:29551–7. doi: 10.1074/jbc.M403866200. PubMed DOI
Li MY, Guo DH, Isales CM, Eizirik DL, Atkinson M, She JX, Wang CY. SUMO wrestling with type 1 diabetes. Journal of Molecular Medicine-Jmm. 2005;83:504–13. doi: 10.1007/s00109-005-0645-5. PubMed DOI
Jena S, Lee WP, Doherty D, Thompson PD. PIAS4 represses vitamin D receptor-mediated signaling and acts as an E3-SUMO ligase towards vitamin D receptor. Journal of Steroid Biochemistry and Molecular Biology. 2012;132:24–31. doi: 10.1016/j.jsbmb.2012.04.006. PubMed DOI
Lee WP, Jena S, Doherty D, Ventakesh J, Schimdt J, Furmick J, Widener T, Lemau J, Jurutka PW, Thompson PD. Sentrin/SUMO Specific Proteases as Novel Tissue-Selective Modulators of Vitamin D Receptor-Mediated Signaling. Plos One. 2014;9 ARTNe8950610.1371/journal.pone.0089506. PubMed PMC
Pasquel D, Doricakova A, Li H, Kortagere S, Krasowski MD, Biswas A, Walton WG, Redinbo MR, Dvorak Z, Mani S. Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms. 2016;1859:1155–69. doi: 10.1016/j.bbagrm.2016.01.006. PubMed DOI PMC
Anbalagan M, Huderson B, Murphy L, Rowan BG. Post-translational modifications of nuclear receptors and human disease. Nucl Recept Signal. 2012;10:e001. doi: 10.1621/nrs.10001. PubMed DOI PMC
Dampf Stone A, Batie SF, Sabir MS, Jacobs ET, Lee JH, Whitfield GK, Haussler MR, Jurutka PW. Resveratrol potentiates vitamin D and nuclear receptor signaling. J Cell Biochem. 2015;116:1130–43. doi: 10.1002/jcb.25070. PubMed DOI
Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, Jurutka PW. Molecular Mechanisms of Vitamin D Action. Calcified Tissue International. 2013;92:77–98. doi: 10.1007/s00223-012-9619-0. PubMed DOI
Saito Y, Suzuki H, Imaeda H, Matsuzaki J, Hirata K, Tsugawa H, Hibino S, Kanai Y, Saito H, Hibi T. The tumor suppressor microRNA-29c is downregulated and restored by celecoxib in human gastric cancer cells. Int J Cancer. 2013;132:1751–60. doi: 10.1002/ijc.27862. PubMed DOI
Anthonisen EH, Berven L, Holm S, Nygard M, Nebb HI, Gronning-Wang LM. Nuclear Receptor Liver X Receptor Is O-GlcNAc-modified in Response to Glucose. Journal of Biological Chemistry. 2010;285:1607–15. doi: 10.1074/jbc.M109.082685. PubMed DOI PMC
Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M. Palmitoylation-dependent estrogen receptor alpha membrane localization: Regulation by 17 beta-estradiol. Molecular Biology of the Cell. 2005;16:231–7. PubMed PMC
Yang WL, Zhang X, Lin HK. Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene. 2010;29:4493–503. doi: 10.1038/onc.2010.190. PubMed DOI PMC
Gascoyne DM, Lyne L, Spearman H, Buffa FM, Soilleux EJ, Banham AH. Vitamin D receptor expression in plasmablastic lymphoma and myeloma cells confers susceptibility to vitamin D. Endocrinology. 2016. p. en20161802. PubMed DOI PMC
Wang J, Udd KA, Vidisheva A, Swift RA, Spektor TM, Bravin E, Ibrahim E, Treisman J, Masri M, Berenson JR. Low serum vitamin D occurs commonly among multiple myeloma patients treated with bortezomib and/or thalidomide and is associated with severe neuropathy. Supportive Care in Cancer. 2016;24:3105–10. doi: 10.1007/s00520-016-3126-1. PubMed DOI
Khanh VQL, Lan THN. The Beneficial Role of Vitamin D in Alzheimer's Disease. American Journal of Alzheimers Disease and Other Dementias. 2011;26:511–20. doi: 10.1177/1533317511429321. PubMed DOI PMC
Annweiler C, Beauchet O. Possibility of a. New Anti-Alzheimer's Disease Pharmaceutical Composition Combining Memantine and Vitamin D. Drugs & Aging. 2012;29:81–91. PubMed
Glantz SB, Amat JA, Rubin CS. Camp Signaling in Neurons - Patterns of Neuronal Expression and Intracellular-Localization for a Novel Protein, Akap-150, That Anchors the Regulatory Subunit of Camp-Dependent Protein Kinase-Ii-Beta. Molecular Biology of the Cell. 1992;3:1215–28. PubMed PMC