Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-enzymatic Properties against Urease by an ESI-MS Based Assay
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28468298
PubMed Central
PMC6154344
DOI
10.3390/molecules22050722
PII: molecules22050722
Knihovny.cz E-zdroje
- Klíčová slova
- ESI-mass spectrometry-based assay, Hibiscus sabdariffa L., anti-HSV-2 activity, bacterial infection, protocatechuic acid, urease inhibitors,
- MeSH
- acyklovir farmakologie MeSH
- antivirové látky chemie izolace a purifikace farmakologie MeSH
- Cercopithecus aethiops MeSH
- Hibiscus chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory enzymů chemie izolace a purifikace farmakologie MeSH
- kinetika MeSH
- lidský herpesvirus 2 účinky léků MeSH
- polyfenoly chemie izolace a purifikace farmakologie MeSH
- preklinické hodnocení léčiv MeSH
- rostlinné extrakty chemie izolace a purifikace farmakologie MeSH
- ureasa antagonisté a inhibitory chemie MeSH
- Vero buňky MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acyklovir MeSH
- antivirové látky MeSH
- inhibitory enzymů MeSH
- polyfenoly MeSH
- rostlinné extrakty MeSH
- ureasa MeSH
For decades, Hibiscus sabdariffa L. and its phytochemicals have been shown to possess a wide range of pharmacologic properties. In this study, aqueous extract of Hibiscus sabdariffa (AEHS) and its bioactive constituent protocatechuic acid (PCA), have been evaluated in vitro for their antiviral activity against HSV-2 clinical isolates and anti-enzymatic activity against urease. Antiherpetic activity was evaluated by the titer reduction assay in infected Vero cells, and cytotoxicity was evaluated by the neutral red dye-uptake method. Anti-urease activity was determined by a developed Electrospray Ionization-Mass Spectrometry (ESI-MS)-based assay. PCA showed potent anti-HSV-2 activity compared with that of acyclovir, with EC50 values of 0.92 and 1.43 µg∙mL-1, respectively, and selectivity indices > 217 and > 140, respectively. For the first time, AEHS was shown to exert anti-urease inhibition activity, with an IC50 value of 82.4 µg∙mL-1. This, combined with its safety, could facilitate its use in practical applications as a natural urease inhibitor. Our results present Hibiscus sabdariffa L. and its bioactive compound PCA as potential therapeutic agents in the treatment of HSV-2 infection and the treatment of diseases caused by urease-producing bacteria.
Zobrazit více v PubMed
Einsenberg R., Atanasiu D., Cairns T.M., Gallagher J.R., Krummenacher C., Cohen G.H. Herpes virus fusion and entry: A story with many characters. Viruses. 2012;4:800–832. doi: 10.3390/v4050800. PubMed DOI PMC
Gescher K., Hensel A., Hafezi W., Derksen A., Kühn J. Oligomeric proanthocyanidins from Rumex acetosa L inhibit the attachment of herpes simplex virus type-1. Antivir. Res. 2011;89:9–18. doi: 10.1016/j.antiviral.2010.10.007. PubMed DOI
Khan M.T., Alter A., Thompson K.D., Gambari R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antivir. Res. 2005;67:107–119. doi: 10.1016/j.antiviral.2005.05.002. PubMed DOI
Keller M.J., Tujama A., Carlucci M.J., Herold B.C. Topical microbicides for prevention of genital herpes infection. J. Antimicrob. Chemother. 2005;55:420–423. doi: 10.1093/jac/dki056. PubMed DOI
Wang Z., Liu Q., Lu J., Fan P., Xie W., Qiu W., Wang F., Hu G., Zhang Y. Serine/Arginine-rich splicing factor 2 modulates herpes simplex virus type 1 replication via regulating viral gene transcriptional activity and pre-mRNA splicing. J. Biol. Chem. 2016;291:26377–26387. doi: 10.1074/jbc.M116.753046. PubMed DOI PMC
Hassan S.T.S., Berchová-Bímová K., Petráš J., Hassan K.T.S. Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. S. Afr. J. Bot. 2017;108:90–94. doi: 10.1016/j.sajb.2016.10.001. DOI
Hassan S.T.S., Masarčíková R., Berchová K. Bioactive natural products with anti-herpes simplex virus properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI
Hassan S.T.S., Žemlička M. Plant-derived urease inhibitors as alternative chemotherapeutic agents. Arch. Pharm. 2016;349:507–522. doi: 10.1002/ardp.201500019. PubMed DOI
Konieczna I., Zarnowiec P., Kwinkowski M., Kolesinska B., Fraczyk J., Kaminski Z., Kaca W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. 2012;13:789–806. doi: 10.2174/138920312804871094. PubMed DOI PMC
Follmer C.J. Ureases as a target for the treatment of gastric and urinary infections. Clin. Pathol. 2010;63:424–430. doi: 10.1136/jcp.2009.072595. PubMed DOI
Kosikowska P., Berlicki Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin. Ther. Pat. 2011;21:945–957. doi: 10.1517/13543776.2011.574615. PubMed DOI
Mazzei L., Cianci M., Musiani F., Ciurli S. Inactivation of urease by 1,4-benzoquinone: Chemistry at the protein surface. Dalton Trans. 2016;45:5455–5459. doi: 10.1039/C6DT00652C. PubMed DOI
Mobley H.L., Island M.D., Hausinger R.P. Molecular biology of microbial ureases. Microbiol. Rev. 1995;59:451–480. PubMed PMC
Tanaka T., Kawase M., Tani S. Urease inhibitory activity of simple α, β-unsaturated ketones. Life Sci. 2003;73:2985–2990. doi: 10.1016/S0024-3205(03)00708-2. PubMed DOI
Zaborska W., Krajewska B., Olech Z. Heavy metal ions inhibition of jack bean urease: Potential for rapid contaminant probing. Enzyme Inhib. Med. Chem. 2004;19:65–69. doi: 10.1080/14756360310001650237. PubMed DOI
Laghari H.A., Memona S., Nelofar A., Khan K.M., Yasmin A., Syed M.N., Aman A. A new flavanenol with urease-inhibition activity isolated from roots of manna plant camelthorn (Alhagi maurorum) J. Mol. Struct. 2010;965:65–67. doi: 10.1016/j.molstruc.2009.11.039. DOI
Paulo L., Oleastro M., Gallardo E., Queiroz J.A., Domingues F. Anti-Helicobacter pylori and urease inhibitory activities of resveratrol and red wine. Food Res. Int. 2011;44:964–969. doi: 10.1016/j.foodres.2011.02.017. DOI
Hassan S.T., Berchová K., Šudomová M. Antimicrobial, antiparasitic and anticancer properties of Hibiscus sabdariffa (L.) and its phytochemicals: In vitro and in vivo studies. Ceska Slov. Farm. 2016;65:10–14. PubMed
De Arruda A., Cardoso C.A., Vieira Mdo C., Arena A.C. Safety assessment of Hibiscus sabdariffa after maternal exposure on male reproductive parameters in rats. Drug Chem. Toxicol. 2016;39:22–27. doi: 10.3109/01480545.2014.1003938. PubMed DOI
Ademiluyi A.O., Oboh G. Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit α-amylase and α-glucosidase activities in vitro. J. Med. Food. 2013;16:88–93. doi: 10.1089/jmf.2012.0004. PubMed DOI
Wang J., Cao X., Jiang H., Qi Y., Chin K. L., Yue Y. Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS. Molecules. 2014;19:21226–21238. doi: 10.3390/molecules191221226. PubMed DOI PMC
Da-Costa-Rocha I., Bonnlaender B., Sievers H., Pischel I., Heinrich M. Hibiscus sabdariffa L.—A phytochemical and pharmacological review. Food Chem. 2014;165:424–443. doi: 10.1016/j.foodchem.2014.05.002. PubMed DOI
Mo Z.-Z., Wang X.-F., Zhang X., Su J.-Y., Chen H.-M., Liu Y.-H., Zhang Z.-B., Xie J.-H., Su Z.-R. Andrographolide sodium bisulphite-induced inactivation of urease: Inhibitory potency, kinetics and mechanism. BMC Complement. Altern. Med. 2015;15:238. doi: 10.1186/s12906-015-0775-4. PubMed DOI PMC
Du N., Chen M., Liu Z., Sheng L., Xu H., Chen S. Kinetics and mechanism of jack bean urease inhibition by Hg2+ Chem. Cent. J. 2012;6:154. doi: 10.1186/1752-153X-6-154. PubMed DOI PMC
Krajewska B. Mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme. J. Enzyme Inhib. Med. Chem. 2008;23:535–542. doi: 10.1080/14756360701743051. PubMed DOI
Wu G., Yuan Y., Hodge C.N. Determining appropriate substrate conversion for enzymatic assays in high-throughput screening. J. Biomol. Screen. 2003;8:694–700. doi: 10.1177/1087057103260050. PubMed DOI
Tanaka T., Kawase M., Tani S. Alpha-hydroxyketones as inhibitors of urease. Bioorg. Med. Chem. 2004;12:501–505. doi: 10.1016/j.bmc.2003.10.017. PubMed DOI
Firdous S., Ansari N.H., Fatima I., Malik A., Afza N., Iqbal L., Lateef M. Ophiamides A-B, new potent urease inhibitory sphingolipids from Heliotropium ophioglossum. Arch. Pharm. Res. 2012;35:1133–1137. doi: 10.1007/s12272-012-0702-x. PubMed DOI
Yang C.M., Cheng H.Y., Lin T.C., Chiang L.C., Lin C.C. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-β-d-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J. Ethnopharmacol. 2007;110:555–558. doi: 10.1016/j.jep.2006.09.039. PubMed DOI
Tseng T.H., Hsu J.D., Lo M.H., Chu C.Y., Chou F.P., Huang C.L., Wang C.J. Inhibitory effect of Hibiscus protocatechuic acid on tumor promotion in mouse skin. Cancer Lett. 1998;126:199–207. doi: 10.1016/S0304-3835(98)00010-X. PubMed DOI
Tseng T.H., Kao T.W., Chu C.Y., Chou F.P., Lin W.L., Wang C.J. Induction of apoptosis by hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem. Pharmacol. 2000;60:307–315. doi: 10.1016/S0006-2952(00)00322-1. PubMed DOI
Charlton A.J., Baxter N.J., Khan M.L., Moir A.J., Haslam E., Davies A.P., Williamson M.P. Polyphenol/peptide binding and precipitation. J. Agric. Food Chem. 2002;50:1593–1601. doi: 10.1021/jf010897z. PubMed DOI
Friend D.R. Pharmaceutical development of microbicide drug products. Pharm. Dev. Technol. 2010;15:562–581. doi: 10.3109/10837450903369879. PubMed DOI
Benini S., Rypniewski W.R., Wilson K.S., Mangani S., Ciurli S. Molecular details of urease inhibition by boric acid: Insights into the catalytic mechanism. J. Am. Chem. Soc. 2004;126:3714–3715. doi: 10.1021/ja049618p. PubMed DOI
De Oliveira A., Adams S.D., Lee L.H., Murray S.R., Hsu S.D., Hammond J.R., Dickinson D., Chen P., Chu T.C. Inhibition of herpes simplex virus 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate. Food Chem. Toxicol. 2013;52:207–215. doi: 10.1016/j.fct.2012.11.006. PubMed DOI PMC
Hassan S.T.S., Šudomová M. The development of urease inhibitors: What opportunities exist for better treatment of Helicobacter pylori infection in children? Children. 2017;4:2. doi: 10.3390/children4010002. PubMed DOI PMC
Nyam K.L., Leao S.Y., Tan C.P., Long K. 2014. Functional properties of roselle (Hibiscus sabdariffa L.) seed and its application as bakery product. J. Food Sci. Technol. 2014;51:3830–3837. doi: 10.1007/s13197-012-0902-x. PubMed DOI PMC
Carvalho D.O., Curto A.F., Guido L.F. Determination of phenolic content in different barley varieties and corresponding malts by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. Antioxidants. 2015;4:563–576. doi: 10.3390/antiox4030563. PubMed DOI PMC
ISO 14502–1: Determination of Substances Characteristic of Green and Black Tea—Part 1: Content of Total Polyphenols in Tea—Colorimetric Method Using Folin-Ciocalteu Reagent. International Organization for Standardization; Geneva, Switzerland: 2005.
Markoulatos P., Georgopoulou A., Siafakas N., Plakokefalos E., Tzanakaki G., Kourea-Kremastinou J. Laboratory diagnosis of common herpesvirus infections of the central nervous system by a multiplex PCR assay. J. Clin. Microbiol. 2001;39:4426–4432. doi: 10.1128/JCM.39.12.4426-4432.2001. PubMed DOI PMC
Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938;27:493–497.
Walker W.E., Waisbren B.A., Martins R.R., Batayias G.E. A method for determining sensitivities of antiviral drugs in vitro for possible use as clinical consultation. Am. J. Clin. Pathol. 1971;56:687–692. doi: 10.1093/ajcp/56.6.687. PubMed DOI
Borenfreund E., Puerner J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985;24:119–124. doi: 10.1016/0378-4274(85)90046-3. PubMed DOI
Nishimura T., Toku H., Fukuyasu H. Antiviral compounds. XII. Antiviral activity of amidinohydrazones of alkoxyphenyl-substituted carbonyl compounds against influenza virus in eggs and in mice. Kitasato Arch. Exp. Med. 1977;50:39–46. PubMed
Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development