Reciprocal Evolution of Opiate Science from Medical and Cultural Perspectives
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28609429
PubMed Central
PMC5478244
DOI
10.12659/msm.905167
PII: 905167
Knihovny.cz E-zdroje
- MeSH
- analgetika terapeutické užití MeSH
- anestetika terapeutické užití MeSH
- aplikace orální MeSH
- kojenec MeSH
- kultura * MeSH
- lidé MeSH
- opioidní analgetika aplikace a dávkování terapeutické užití MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- analgetika MeSH
- anestetika MeSH
- opioidní analgetika MeSH
Over the course of human history, it has been common to use plants for medicinal purposes, such as for providing relief from particular maladies and self-medication. Opium represents one longstanding remedy that has been used to address a range of medical conditions, alleviating discomfort often in ways that have proven pleasurable. Opium is a combination of compounds obtained from the mature fruit of opium poppy, papaver somniferum. Morphine and its biosynthetic precursors thebaine and codeine constitute the main bioactive opiate alkaloids contained in opium. Opium usage in ancient cultures is well documented, as is its major extract morphine. The presence of endogenous opiate alkaloids and opioid peptides in animals owe their discovery to their consistent actions at particular concentrations via stereo select receptors. In vitro expression of morphine within a microbiological industrial setting underscores the role it plays as a multi-purpose pharmacological agent, as well as reinforcing why it can also lead to long-term social dependence. Furthermore, it clearly establishes a reciprocal effect of human intelligence on modifying evolutionary processes in papaver somniferum and related plant species.
Zobrazit více v PubMed
Norn S, Kruse PR, Kruse E. [History of opium poppy and morphine]. Dan Medicinhist Arbog. 2005;33:171–84. [in Danish] PubMed
Brownstein MJ. A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci USA. 1993;90(12):5391–93. PubMed PMC
Heydari M, Hashempur MH, Zargaran A. Medicinal aspects of opium as described in Avicenna’s Canon of Medicine. Acta Med Hist Adriat. 2013;11(1):101–12. PubMed
Prioreschi P, Heaney RP, Brehm E. A quantitative assessment of ancient therapeutics: Poppy and pain in the Hippocratic Corpus. Med Hypotheses. 1998;51(4):325–31. PubMed
Kirkup J. Surgery before general anesthesia. In: Mann RD, editor. The History of the Management of Pain. Parthenon Publishing Group; Casterton Hall: 1988. pp. 15–30.
Hamilton GR, Baskett TF. In the arms of Morpheus the development of morphine for postoperative pain relief. Can J Anaesth. 2000;47(4):367–74. PubMed
Obladen M. Lethal lullabies: A history of opium use in infants. J Hum Lact. 2016;32(1):75–85. PubMed
Kramer JC. Opium rampant: Medical use, misuse and abuse in Britain and the West in the 17th and 18th centuries. Br J Addict Alcohol Other Drugs. 1979;74(4):377–89. PubMed
Macht DI. The history of opium and some of its preparations and alkaloids. 1915
Warolin C. [The opiate pharmacopeia in France from its origins to the 19th century]. Rev Hist Pharm (Paris) 2010;58(365):81–90. [in French] PubMed
Sigerist HE. Laudanum in the works of Paracelsus. Bulletin of the history of medicine. 1941;9
Jones J. The Mysteries of Opium Reveal’d. London: R. Smith; 1701.
Ricci JV. Norman obstetrics & gynecology series. ix. San Francisco: Norman Pub.; 1990. The development of gynaecological surgery and instruments; p. 594.
Jurna I. [Serturner and morphine – a historical vignette]. Schmerz. 2003;17(4):280–83. [in German] PubMed
Goerig M, Schulte am Esch J. [Friedrich Wilhelm Adam Serturner-the discoverer of morphine]. Anasthesiol Intensivmed Notfallmed Schmerzther. 1991;26(8):492–98. [in German] PubMed
Terry R, Brownstein AJ. Opioid and cannabinoid receptors. Curr Opinion Neurobiol. 1994;4:406–12. PubMed
Gregory W. On a process for preparing economically the Muriate of Morphia. Edin Med Surg J. 1831;35:331–38. PubMed PMC
Klockgether-Radke AP. [F. W. Serturner and the discovery of morphine. 200 years of pain therapy with opioids]. Anasthesiol Intensivmed Notfallmed Schmerzther. 2002;37(5):244–49. [in German] PubMed
Howard-Jones N. A critical study of the origins and early development of hypodermic medication. J Hist Med Allied Sci. 1947;2(2):201–49. PubMed
Paget J. Subcutaneous injection of morphia after operation, before restoration of consciousness after chloroform. Lancet. 1863;81(2058):148.
Duarte DF. [Opium and opioids: a brief history]. Rev Bras Anestesiol. 2005;55(1):135–46. [in Portuguese] PubMed
Shoemaker JV. A Practical Treatise on Materia Medica and Therapeitics. Philadelphia: F.A. Davis Company; 1908.
Rawal N, Sjostrand U, Dahlstrom B. Postoperative pain relief by epidural morphine. Anesth Analg. 1981;60(10):726–31. PubMed
Kalso E, Tramer MR, Carroll D, et al. Pain relief from intra-articular morphine after knee surgery: A qualitative systematic review. Pain. 1997;71(2):127–34. PubMed
Snyder SH, Simantov R. The opiate receptor and opoid peptides. J Neurochem. 1977;28(1):13–20. PubMed
Snyder SH. Opiate receptors in the brain. N Engl J Med. 1977;296(5):266–71. PubMed
Pert CB, Snyder SH. Opiate receptor: Demonstration in nervous tissue. Science. 1973;179(77):1011–14. PubMed
Pert CB, Snyder SH. Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci USA. 1973;70(8):2243–47. PubMed PMC
Pert CB, Pasternak G, Snyder SH. Opiate agonists and antagonists discriminated by receptor binding in brain. Science. 1973;182(4119):1359–61. PubMed
Reinscheid RK, Nothacker HP, Bourson A, et al. Orphanin FQ: A neuropeptide that activates an opioidlike G protein-coupled reaction. Science. 1995;270:792–94. PubMed
Hughes J, Smith TW, Kosterlitz HW, et al. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975;258(5536):577–80. PubMed
Hughes J, Smith T, Morgan B, Fothergill L. Purification and properties of enkephalin – the possible endogenous ligand for the morphine receptor. Life Sci. 1975;16(12):1753–58. PubMed
Simantov R, Snyder SH. Morphine-like peptides, leucine enkephalin and methionine enkephalin: Interactions with the opiate receptor. Mol Pharmacol. 1976;12(6):987–98. PubMed
Bradbury AF, Smyth DG, Snell CR. Biosynthetic origin and receptor conformation of methionine enkephalin. Nature. 1976;260(5547):165–66. PubMed
Graf L, Ronai A, Bajusz S, et al. Opioid agonist activity of beta-lipotropin fragments: A possible biological source of morphine-like substances in the pituitary. FEBS Lett. 1976;64(1):181–84. PubMed
Li CH, Chung D, Doneen BA. Isolation, characterization and opiate activity of beta-endorphin from human pituitary glands. Biochem Biophys Res Commun. 1976;72(4):1542–47. PubMed
Cox BM, Opheim KE, Teschemacher H, Goldstein A. A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties. Life Sci. 1975;16(12):1777–82. PubMed
Goldstein A, Tachibana S, Lowney LI, et al. Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA. 1979;76(12):6666–70. PubMed PMC
Zadina JE, Hackler L, Ge LJ, Kastin AJ. A potent and selective endogenous agonist for the mu opiate receptor. Nature. 1997;386:499–501. PubMed
Hackler L, Zadina JE, Ge LJ, Kastin AJ. Isolation of relatively large amounts of endomorphin-1 and endomorphin-2 from human brain cortex. Peptides. 1997;18(10):1635–39. PubMed
Stefano GB, Catapane EJ. Enkephalin increases dopamine levels in the CNS of a marine mollusc. Life Sci. 1979;24:1617–22. PubMed
Stefano GB, Kream RM, Zukin RS. Demonstration of stereospecific opiate binding in the nervous tissue of the marine mollusc Mytilus edulis. Brain Res. 1980;181:445–50. PubMed
Leung MK, Stefano GB. Isolation and identification of enkephalin in pedal ganglia of Mytilus edulis (mollusca) Proc Natl Acad Sci USA. 1984;81:955–58. PubMed PMC
Stefano GB, Digenis A, Spector S, et al. Opiate-like substances in an invertebrate, an opiate receptor on invertebrate and human immunocytes, and a role in immunosuppression. Proc Natl Acad Sci USA. 1993;90:11099–103. PubMed PMC
Zhu W, Baggerman G, Goumon Y, et al. Identification of morphine and morphine-6-glucuronide in the adrenal medullary chromaffin PC-12 cell line by nano electrospray ionization double quadrupole orthogonal acceleration time of flight mass spectrometry. Eur J Mass Spect. 2001;7:25–28.
Gintzler AR, Levy A, Spector S. Antibodies as a means of isolating and characterizing biologically active substances: Presence of a non-peptide, morphine-like compound in the central nervous system. Proc Natl Acad Sci USA. 1976;73(6):2132–36. PubMed PMC
Gintzler AR, Gershon MD, Spector S. A nonpeptide morphine-like compound: Immunocytochemical localization in the mouse brain. Science. 1978;199(4327):447–48. PubMed
Blume AJ, Shorr J, Finberg JP, Spector S. Binding of the endogenous nonpeptide morphine-like compound to opiate receptors. Proc Natl Acad Sci USA. 1977;74(11):4927–31. PubMed PMC
Stefano GB, Scharrer B. Endogenous morphine and related opiates, a new class of chemical messengers. Adv Neuroimmunol. 1994;4:57–68. PubMed
Mavrojannis A. L’action cataleptique de la morphine chez les rats. Contribution á la théorie toxique de la catalepsie. Compt Rend Soc de Biol. 1903;55:1092–94. [in French]
Laux-Biehlmann A, Mouheiche J, Veriepe J, Goumon Y. Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives. Neuroscience. 2013;233:95–117. PubMed
Stefano GB, Goumon Y, Casares F, et al. Endogenous morphine. Trends Neurosci. 2000;9:436–42. PubMed
Stefano GB, Ptacek R, Kuzelova H, Kream RM. Endogenous morphine: Up-to-date review 2011. Folia Biologica. 2012;58(2):49–56. PubMed
Goldstein A, Barrett RW, James IF, et al. Morphine and other opiates from beef brain and adrenal. Proc Natl Acad Sci USA. 1985;82:5203–7. PubMed PMC
Zhu W, Mantione KJ, Shen L, Stefano GB. In vivo and in vitro L-DOPA and reticuline exposure increases ganglionic morphine levels. Med Sci Monit. 2005;11(5):MS1–5. PubMed
Zhu W, Mantione KJ, Shen L, et al. Tyrosine and tyramine increase endogenous ganglionic morphine and dopamine levels in vitro and in vivo: CYP2D6 and tyrosine hydroxylase modulation demonstrates a dopamine coupling. Med Sci Monit. 2005;11:BR397–404. PubMed
Donnerer J, Oka K, Brossi A, et al. Presence and formation of codeine and morphine in the rat. Proc Natl Acad Sci USA. 1986;83(12):4566–67. PubMed PMC
Cardinale GJ, Donnerer J, Finck AD, et al. Morphine and codeine are endogenous components of human cerebrospinal fluid. Life Sci. 1987;40:301–6. PubMed
Weitz CJ, Faull KF, Goldstein A. Synthesis of the skeleton of the morphine molecule by mammalian liver. Nature. 1987;330(6149):674–77. PubMed
Kodaira H, Spector S. Transformation of thebaine to oripavine, codeine, and morphine by rat liver, kidney, and brain microsomes. Proc Natl Acad Sci USA. 1988;85(4):1267–71. PubMed PMC
Kodaira H, Listek CA, Jardine I, et al. Identification of the convulsant opiate thebaine in the mammalian brain. Proc Natl Acad Sci USA. 1989;86:716–19. PubMed PMC
Zhu W, Bilfinger TV, Baggerman G, et al. Presence of endogenous morphine and morphine 6 glucuronide in human heart tissue. Int J Mol Med. 2001;7(4):419–22. PubMed
Zhu W, Baggerman G, Goumon Y, et al. Presence of morphine and morphine-6-glucuronide in the marine mollusk Mytilus edulis ganglia determined by GC/MS and Q-TOF-MS. Starvation increases opiate alkaloid levels. Brain Res Mol Brain Res. 2001;88(1–2):155–60. PubMed
Zhu W, Ma Y, Stefano GB. Presence of isoquinoline alkaloids in molluscan ganglia. Neuroendocrinol Lett. 2002;23(4):329–34. PubMed
Zhu W, Ma Y, Cadet P, et al. Presence of reticuline in rat brain: A pathway for morphine biosynthesis. Mol Brain Res. 2003;117(1):83–90. PubMed
Zhu W, Stefano GB. Reticuline exposure to invertebrate ganglia increases endogenous morphine levels. Neuro Endocrinol Lett. 2004;25(5):323–30. PubMed
Neri C, Guarna M, Bianchi E, et al. Endogenous morphine and codeine in the brain of non-human primate. Med Sci Monit. 2004;10(6):MS1–5. PubMed
Zhu W, Cadet P, Baggerman G, et al. Human white blood cells synthesize morphine: CYP2D6 modulation. J Immunol. 2005;175(11):7357–62. PubMed
Davis VE, Walsh MJ. Alcohol, amines, and alkaloids: A possible biochemical basis for alcohol addiction. Science. 1970;167(920):1005–7. PubMed
Cadet P, Mantione KJ, Zhu W, et al. A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol. 2007;179(9):5839–44. PubMed
Cadet P, Mantione KJ, Bilfinger TV, Stefano GB. Differential expression of the human mu opiate receptor from different primary vascular endothelial cells. Med Sci Monit. 2004;10(10):BR351–55. PubMed
Kream RM, Stefano GB. De novo biosynthesis of morphine in animal cells: An evidence-based model. Med Sci Monit. 2006;12(10):RA207–19. PubMed
Kream RM, Sheehan M, Cadet P, et al. Persistence of evolutionary memory: Primordial six-transmembrane helical domain mu opiate receptors selectively linked to endogenous morphine signaling. Med Sci Monit. 2007;13(12):SC5–6. PubMed
Poeaknapo C, Schmidt J, Brandsch M, et al. Endogenous formation of morphine in human cells. Proc Natl Acad Sci USA. 2004;101(39):14091–96. PubMed PMC
Boettcher C, Fellermeier M, Boettcher C, et al. How human neuroblastoma cells make morphine. Proc Natl Acad Sci USA. 2005;102(24):8495–500. PubMed PMC
Grobe N, Lamshoft M, Orth RG, et al. Urinary excretion of morphine and biosynthetic precursors in mice. Proc Natl Acad Sci USA. 2010;107(18):8147–52. PubMed PMC
Zhu W, Ma Y, Bell A, et al. Presence of morphine in rat amygdala: Evidence for the mu3 opiate receptor subtype via nitric oxide release in limbic structures. Med Sci Monit. 2004;10(12):BR433–39. PubMed
Zhu W, Mantione KJ, Shen L, et al. Norlaudanosoline and nicotine increase endogenous ganglionic morphine levels: Nicotine addiction. Cell Mol Neurobiol. 2006;26(4–6):1037–45. PubMed
Stefano GB, Kream RM. Endogenous morphine synthetic pathway preceded and gave rise to catecholamine synthesis in evolution (Review) Int J Mol Med. 2007;20(6):837–41. PubMed
Stefano GB, Kream RM. Dopamine, morphine, and nitric oxide: An evolutionary signaling triad. CNS Neurosci Ther. 2010;16(3):e124–37. PubMed PMC
Stefano GB, Mantione KJ, Capellan L, et al. Morphine stimulates nitric oxide release in human mitochondria. J Bioenerg Biomembr. 2015;47(5):409–17. PubMed
Ptacek R, Stefano GB, Weissenberger S, et al. Attention deficit hyperactivity disorder and disordered eating behaviors: Links, risks, and challenges faced. Neuropsychiatr Dis Treat. 2016;12:571–79. PubMed PMC
Stefano GB, Kream RM. Glycolytic coupling to mitochondrial energy production ensures survival in an oxygen rich environment. Med Sci Monit. 2016;22:2571–75. PubMed PMC
Stefano GB, Challenger S, Kream RM. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr. 2016;55(8):2339–45. PubMed PMC
Dziggel C, Schafer H, Wink M. Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms. Biotechnol J. 2017;12(1) PubMed
Chang L, Hagel JM, Facchini PJ. Isolation and characterization of O-methyltransferases involved in the biosynthesis of glaucine in Glaucium flavum. Plant Physiol. 2015;169(2):1127–40. PubMed PMC
Matsumura E, Nakagawa A, Tomabechi Y, et al. Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method. Biosci Biotechnol Biochem. 2017;81(2):396–402. PubMed
Nakagawa A, Matsuzaki C, Matsumura E, et al. (R,S)-tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Sci Rep. 2014;4:6695. PubMed PMC