Hydrophilic, Potent, and Selective 7-Substituted 2-Aminoquinolines as Improved Human Neuronal Nitric Oxide Synthase Inhibitors

. 2017 Aug 24 ; 60 (16) : 7146-7165. [epub] 20170804

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid28776992

Grantová podpora
F32 GM109667 NIGMS NIH HHS - United States
R01 GM049725 NIGMS NIH HHS - United States
R01 GM057353 NIGMS NIH HHS - United States
R01 GM081568 NIGMS NIH HHS - United States

Neuronal nitric oxide synthase (nNOS) is a target for development of antineurodegenerative agents. Most nNOS inhibitors mimic l-arginine and have poor bioavailability. 2-Aminoquinolines showed promise as bioavailable nNOS inhibitors but suffered from low human nNOS inhibition, low selectivity versus human eNOS, and significant binding to other CNS targets. We aimed to improve human nNOS potency and selectivity and reduce off-target binding by (a) truncating the original scaffold or (b) introducing a hydrophilic group to interrupt the lipophilic, promiscuous pharmacophore and promote interaction with human nNOS-specific His342. We synthesized both truncated and polar 2-aminoquinoline derivatives and assayed them against recombinant NOS enzymes. Although aniline and pyridine derivatives interact with His342, benzonitriles conferred the best rat and human nNOS inhibition. Both introduction of a hydrophobic substituent next to the cyano group and aminoquinoline methylation considerably improved isoform selectivity. Most importantly, these modifications preserved Caco-2 permeability and reduced off-target CNS binding.

Zobrazit více v PubMed

Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60:1119–1122. PubMed

Torreilles F, Salman-Tabcheh S, Guerin M, Torreilles J. Neurodegenerative disorders: the role of peroxynitrite. Brain Res Rev. 1999;30:153–163. PubMed

Zhang L, Dawson VL, Dawson TM. Role of nitric oxide in Parkinson's disease. Pharmacol Ther. 2006;109:33–41. PubMed

Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994;265:1883–1885. PubMed

Dorheim MA, Tracey WR, Pollock JS, Grammas P. Nitric oxide synthase activity is elevated in brain microvessels in Alzheimer's disease. Biochem Biophys Res Commun. 1994;205:659–665. PubMed

Kim KH, Kim JI, Han JA, Choe MA, Ahn JH. Upregulation of neuronal nitric oxide synthase in the periphery promotes pain hypersensitivity after peripheral nerve injury. Neuroscience. 2011;190:367–378. PubMed

Maccallini C, Amoroso R. Targeting neuronal nitric oxide synthase as a valuable strategy for the therapy of neurological disorders. Neural Regener Res. 2016;11:1731–1734. PubMed PMC

Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase (NOS) inhibitors for neurodegenerative diseases and neuropathic pain. Chem Soc Rev. 2014;43:6814–6838. PubMed PMC

Siddhanta U, Presta A, Fan B, Wolan D, Rousseau DL, Stuehr DJ. Domain swapping in inducible NO synthase: electron transfer occurs between flavin and heme groups located on adjacent subunits in the dimer. J Biol Chem. 1998;273:18950–18958. PubMed

Rosen GM, Tsai P, Pou S. Mechanism of free-radical generation by nitric oxidesynthase. Chem Rev. 2002;102:1191–1199. PubMed

Delker SL, Ji H, Li H, Jamal J, Fang J, Xue F, Silverman RB, Poulos TL. Unexpected binding modes of nitric oxide synthase inhibitors effective in the prevention of cerebral palsy. J Am Chem Soc. 2010;132:5437–5442. PubMed PMC

Wang HY, Qin Y, Li H, Roman LJ, Martásek P, Poulos TL, Silverman RB. Potent and selective human neuronal nitric oxide synthase inhibition by optimization of the 2-aminopyridine-based scaffold with a pyridine linker. J Med Chem. 2016;59:4913–4925. PubMed PMC

Mukherjee P, Li H, Sevrioukova I, Chreifi G, Martásek P, Roman LJ, Poulos TL, Silverman RB. Novel 2,4-disubstituted pyrimidines as potent, selective, and cell-permeable inhibitors of neuronal nitric oxide synthase. J Med Chem. 2015;58:1067–1088. PubMed PMC

Cinelli MA, Li H, Chreifi G, Martásek P, Roman LJ, Poulos TL, Silverman RB. Simplified 2-aminoquinoline-based scaffold for potent and selective neuronal nitric oxide synthase inhibition. J Med Chem. 2014;57:1513–1530. PubMed PMC

Cinelli MA, Li H, Pensa AV, Kang S, Martásek P, Roman LJ, Poulos TL, Silverman RB. Phenyl ether- and aniline-containing 2-aminoquinolines as potent and selective inhibitors of neuronal nitric oxide synthase. J Med Chem. 2015;58:8694–8712. PubMed PMC

Kobayashi Y, Ikeda K, Shinozuka K, Nara Y, Yamori Y, Hattori K. L-nitroarginine increases blood pressure in the rat. Clin Exp Pharmacol Physiol. 1991;18:397–399. PubMed

Willcock DM, Lewis MR, Van Nostrand WE, Davis J, Previti ML, Gharkholonarehe N, Vitek MP, Colton CA. Progression of amyloid pathology to Alzhemer's disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2. J Neurosci. 2008;28:1537–1545. PubMed PMC

Li M, Dai F, Du X, Yang Q, Chen Y. Neuroprotection by silencing iNOS expression in a 6-OHDA model of Parkinson's disease. J Mol Neurosci. 2012;48:225–233. PubMed

Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang XP, Norval S, Sassano MF, Shin AI, Webster LA, Simeons FR, Stojanovski L, Prat A, Seidah NG, Constam DB, Bickerton GR, Read KD, Wetsel WC, Gilbert IH, Roth BL, Hopkins AL. Automated design of ligands to polypharmacological profiles. Nature. 2012;492:215–220. PubMed PMC

Cinelli MA, Li H, Chreifi G, Poulos TL, Silverman RB. Nitrile in the hole: discovery of a small auxiliary pocket in neuronal nitric oxide synthase leading to the development of potent and selective 2-aminoquinoline inhibitors. J Med Chem. 2017;60:3958–3978. PubMed PMC

Li H, Jamal J, Plaza C, Pineda SH, Chreifi G, Jing Q, Cinelli MA, Silverman RB, Poulos TL. Crystal structures of human constitutive nitric oxide synthases. Acta Crystallogr Sect D: Biol Crystallogr. 2014;D70:2667–2674. PubMed PMC

Xue F, Li H, Fang J, Roman LJ, Martásek P, Poulos TL, Silverman RB. Peripheral but crucial: A hydrophobic pocket (Tyr706, Leu337, and Met336) for potent and selective inhibition of neuronal nitric oxide synthase. Biooorg Med Chem Lett. 2010;20:6258–6261. PubMed PMC

Kang S, Li H, Tang W, Martάsek P, Roman LJ, Poulos TL, Silverman RB. 2-Aminopyridines with a truncated side chain to improve human neuronal nitric oxide synthase inhibitory potency and selectivity. J Med Chem. 2015;58:5548–5560. PubMed PMC

Ji H, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB. Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. J Med Chem. 2009;52:779–797. PubMed PMC

Jones LH, Summerhill NW, Swain NA, Mills JE. Aromatic chloride to nitrile transformation: medicinal and synthetic chemistry. Med Chem Commun. 2010;1:309–318.

Romera JL, Cid JM, Trabanco AA. Potassium iodide catalysed monoalkylation of anilines under microwave irradiation. Tetrahedron Lett. 2004;45:8797–8800.

Inglis S, Jones R, Fritz D, Stojkoski C, Booker G, Pyke S. Synthesis of 5-, 6- and 7-subsituted -2-aminoquinolines as SH3 domain ligands. Org Biomol Chem. 2005;3:2543–2557. PubMed

Salvatore RN, Nagle AS, Jung KW. Cesium Effect: High chemoselectivity in direct N-alkylation of amines. J Org Chem. 2002;67:674–683. PubMed

Ahmed G, Bohnstedt A, Breslin HJ, Burke J, Curry MA, Diebold JL, Dorsey B, Dugan BJ, Feng D, Gingrich DE, Guo T, Ho KK, Learn KS, Lisko JG, Liu RQ, Mesaros EF, Milkiewicz K, Ott GR, Parrish J, Theroff JP, Thieu TV, Tripathy R, Underiner TL, Wagner JC, Weinberg L, Wells GJ, You M, Zificsak CA. Fused Bicyclic Derivatives of 2,4-Diaminopyrimidine as ALK and c-Met Kinase Inhibitors. 2008 May;2 WO2008/051547.

Lopchuk JM, Hughes P, Gribble GW. What controls regiochemistry in 1,3-dipolar cycloadditions of munchnones with nitrostyrenes? Org Lett. 2013;15:5218–5221. PubMed

Guedat P, Berecibar A, Ciapetti P, Vekata Pithani S, Trouche N, Vivalis F. Hydantoin and Thiohydantoin Derivatives as Antiviral Drugs. 2013 Nov 20;:EP2664616.

Senecal TD, Shu W, Buchwald SL. A general, practical palladium-catalyzed cyanation of (hetero)aryl chlorides and bromides. Angew Chem Int Ed. 2013;52:10035–10039. PubMed PMC

Charrier JD, Binch HM, Hurley DJ, Cleveland T, Joshi P, Fanning LTD, Pinder J, O'Donnell M, Virani AN, Knegtel RMA, Durrant SJ, Young SC, Storck PH, Kay D, Reaper PM. Compounds Useful as Inhibitors of ATR Kinase. 2011 Nov 17; WO2011/143426.

Adams ND, Chuadhari AM, Kiesow TJ, McSherry AK, Moore ML, Parrish CA, Reif AJ, Ridgers LH. Spirocyclic Piperidine Derivatives for Use as Fatty Acid Synthase Inhibitors. 2014 Jan 9; WO2014/008223.

Brown W, Johnstone S, Larecque D. Benzimidiazole Derivatives as Vanilloid Receptor Antagonists, Their Preparation, Pharmaceutical Compositions, and Use in Therapy. 2008 Feb 14; WO2008/018827.

Runyon SP, Mosier PD, Roth BL, Glennon RA, Westkaemper RB. Potential modes of interaction of 9-aminomethyl-9,10-dihydroanthracene (AMDA) derivatives with the 5-HT2A receptor: ligand structure-affinity relationship, receptor mutagenesis and receptor modeling investigation. J Med Chem. 2008;51:6808–6828. PubMed PMC

Silverman RB, Cinelli MA, Pensa AV. 2-Aminoquinoline Compounds for Potent and Selective Neuronal Nitric Oxide Synthase Inhibition. US Patent. 2017 May 30;9,663,468

Yin J, Xiang B, Huffman MA, Raab CE, Davies IW. A general and efficient 2-amination of pyridines and quinolines. J Org Chem. 2007;72:4554–4557. PubMed

Ueda T, Konishi H, Manabe K. Palladium-catalyzed reductive carbonylation of aryl halides with N-formylsaccharin as a CO source. Angew Chem Int Ed. 2013;52:8611–8615. PubMed

Fedorov R, Vasan R, Ghosh D, Schlichting I. Structures of nitric oxide synthase isoforms complexed with the inhibitor AR-R17477 suggest a rational basis for specificity and inhibitor design. Proc Natl Acad Sci U S A. 2004;101:4892–4897. PubMed PMC

Smith GF. Designing drugs to avoid toxicity. Prog Med Chem. 2011;50:1–47. PubMed

Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem. 2010;53:7902–7917. PubMed PMC

Lundquist S, Renftel M, Brillault J, Fenart L, Cecchelli R, Dehouck MP. Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharm Res. 2002;19:976–981. PubMed

Roman LJ, Sheta EA, Martásek P, Gross SS, Liu Q, Masters BSS. High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli. Proc Natl Acad Sci U S A. 1995;92:8428–8432. PubMed PMC

Hevel JM, White KA, Marletta MA. Purification of the inducible murine macrophage nitric oxide synthase: identification as a flavoprotein. J Biol Chem. 1991;266:22789–22791. PubMed

Gerber NC, Ortiz de Montellano PR. Neuronal nitric oxide synthase: expression in Escherichia coli, irreversible inhibition by phenyldiazene, and active site topology. J Biol Chem. 1995;270:17791–17796. PubMed

Cheng YC, Prusoff WH. Relationship between the inhibition constant (Ki) and the concentration of the inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–3108. PubMed

Leber A, Hemmens B, Klosch B, Goessler W, Raber G, Mayer B, Schmidt K. Characterization of recombinant human endothelial nitric-oxide synthase purified from the yeast Pichia pastoris. J Biol Chem. 1999;274:37658–37665. PubMed

McPhillips TM, McPhillips SE, Chiu HJ, Cohen AE, Deacon AM, Ellis PJ, Garman E, Gonzalez A, Sauter NK, Phizackerley RP, Soltis SM, Kuhn P. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat. 2002;9:401–406. PubMed

Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr, Sect D: Biol Crystallogr. 2011;67:271–281. PubMed PMC

Kabsch W. XDS. Acta Crystallogr, Sect D: Biol Crystallogr. 2010;66:125–132. PubMed PMC

Evans PR. Scaling and assessment of data quality. Acta Crystallogr, Sect D: Biol Crystallogr. 2006;62:72–82. PubMed

Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr, Sect D: Biol Crystallogr. 1997;53:240–255. PubMed

Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. ActaCrystallogr, Sect D: Biol Crystallogr. 2004;60:2126–2132. PubMed

Adams PD, Afonine PV, Bunkoćzi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr, Sect D: Biol Crystallogr. 2010;66:213–221. PubMed PMC

Coy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674. PubMed PMC

Winn MD, Isupov MN, Murshudov GN. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr, Sect D: Biol Crystallogr. 2001;57:122–133. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...