The effect of Benzothiazolone-2 on the expression of Metallothionein-3 in modulating Alzheimer's disease
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28948092
PubMed Central
PMC5607561
DOI
10.1002/brb3.799
PII: BRB3799
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, flow cytometry, immunodetection, metallothionein‐3, molecular dynamics, qRT‐PCR,
- MeSH
- Alzheimerova nemoc metabolismus MeSH
- apoptóza účinky léků MeSH
- benzothiazoly chemie farmakologie MeSH
- buněčné linie MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- metalothionein metabolismus MeSH
- mikroglie účinky léků metabolismus MeSH
- mozek účinky léků metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzothiazoly MeSH
- messenger RNA MeSH
- metalothionein MeSH
- reaktivní formy kyslíku MeSH
INTRODUCTION: Metallothioneins (MTs) are a class of ubiquitously occurring low-molecular-weight cysteine- and metal-rich proteins containing sulfur-based metal clusters. MT-3 exhibits neuro-inhibitory activity. The possibility to enhance the expression of MT-3 or protect it from degradation is an attractive therapeutic target, because low levels of MT-3 were found in brains of Alzheimer's disease (AD) patients. OBJECTIVES: The primary objective of this study was to test an enhancement of MT-3 cellular concentration after MT-3 binding treatment, which could prevent MT-3 degradation. METHODS: MTT assay, flow-cytometry, fluorescence microscopy, quantitative real-time polymerase chain reaction, and immunodetection of MT3 were used for analysis of effect of STOCK1N-26544, STOCK1N-26929, and STOCK1N-72593 on immortalized human microglia-SV40 cell line. RESULTS: All three tested compounds enhanced concentration of MT-3 protein in cells and surprisingly also mRNA concentration. IC50 values of tested molecules exceeded about ten times the concentration that was needed for induction of MT-3 expression. The tested compound Benzothiazolone-2 enhanced apoptosis and necrosis, but it was not of severe effect. About 80% of cells were still viable. There was no serious ROS-generation and no severe decrease in mitochondria numbers or stress induced endoplasmic reticulum changes after test treatments. The selected compound showed stable hydrophobic and electrostatic interaction during MT-3 ligand interaction. CONCLUSION: Benzothiazolone-2 compounds significantly enhanced MT-3 protein and mRNA levels. The compounds can be looked upon as one of the probable lead compounds for future drug designing experiments in the treatment of Alzheimer's disease.
Biotechnology Division CSIR Central Institute of Medicinal and Aromatic Plants Lucknow India
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Pathological Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Baker, N. A. , Sept, D. , Joseph, S. , Holst, M. J. , & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98, 10037–10041. PubMed PMC
Barnham, K. J. , Haeffner, F. , Ciccotosto, G. D. , Curtain, C. C. , Tew, D. , Mavros, C. , … Bush, A. I. (2004). Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease beta‐amyloid. FASEB Journal, 18, 1427–1429. PubMed
Berendsen, H. J. C. , van der Spoel, D. , & van Drunen, R. (1995). GROMACS: A message‐passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.
Bonda, D. J. , Lee, H. G. , Blair, J. A. , Zhu, X. , Perry, G. , & Smith, M. A. (2011). Role of metal dyshomeostasis in alzheimer disease. Metallomics, 3, 267–270. PubMed PMC
Bush, A. I. , & Tanzi, R. E. (2008). Therapeutics for Alzheimer's disease based on the metal hypothesis. Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics, 5, 421–432. PubMed PMC
Carrasco, J. , Giralt, M. , Molinero, A. , Penkowa, M. , Moos, T. , & Hidalgo, J. (1999). Metallothionein (MT)‐III: Generation of polyclonal antibodies, comparison with MT‐I+II in the freeze lesioned rat brain and in a bioassay with astrocytes, and analysis of Alzheimer's disease brains. Journal of Neurotrauma, 16, 1115–1129. PubMed
Garret, S. H. , Park, S. , Sens, M. A. , Somji, S. , Singh, R. K. , Namburi, V. B. , & Sens, D. A. (2005). Expression of metallothionein isoform 3 is restricted at the post transcriptional level in human bladder epithelial cells. Toxicological Sciences, 87, 66–74. PubMed
Haass, C. , & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer's amyloid beta‐peptide. Nature Reviews Molecular Cell Biology, 8, 101–112. PubMed
Iqbal, K. , Liu, F. , Gong, C. X. , Alonso Adel, C. , & Grundke‐Iqbal, I. (2009). Mechanisms of tau‐induced neurodegeneration. Acta Neuropathologica, 118, 53–69. PubMed PMC
Kemp, M. G. (2017). Crosstalk between apoptosis and autophagy: environmental Genotoxins, infection, and innate immunity. Journal of Cell Death, 9, 1–6. PubMed PMC
Kim, J. H. , Nam, Y. P. , Jeon, S. M. , Han, H. S. , & Suk, K. (2012). Amyloid neurotoxicity is attenuated by metallothionein: Dual mechanisms at work. Journal of Neurochemistry, 121, 751–762. PubMed
Kumari, R. , Kumar, R. , Open Source Drug Discovery Consortium , & Lynn, A. (2014). g_mmpbsa A GROMACS tool for high throughput MM PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962. PubMed
Lee, J. A. (2009). Autophagy in neurodegeneration: Two sides of the same coin. BMB Reports, 42, 324–330. PubMed
Lee, S. J. , Park, M. H. , Kim, H. J. , & Koh, J. Y. (2010). Metallothionein‐3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia, 58, 1186–1196. PubMed
Lindahl, E. , Berk, H. , & David, V. S. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.
Lovell, M. A. , Robertson, J. D. , Teesdale, W. J. , Campbell, J. L. , & Markesbery, W. R. (1998). Copper, iron and zinc in Alzheimer's disease senile plaques. Journal of the Neurological Sciences, 158, 47–52. PubMed
Martin, B. L. , Tokheim, A. M. , McCarthy, P. T. , Doms, B. S. , Davis, A. A. , & Armitage, I. M. (2006). Metallothionein‐3 and neuronal nitric oxide synthase levels in brains from the Tg2576 mouse model of Alzheimer's disease. Molecular and Cellular Biochemistry, 283, 129–137. PubMed
Miu, A. C. , & Benga, O. (2006). Aluminum and Alzheimer's disease: A new look. Journal of Alzheimer's Disease, 10, 179–201. PubMed
Miyoshi, N. , Watanabe, E. , Osawa, T. , Okuhira, M. , Murata, Y. , Ohshima, H. , & Nakamura, Y. (2008). ATP depletion alters the mode of cell death induced by benzyl isothiocyanate. Biochimica et Biophysica Acta, 10, 566–573. PubMed
Moreira, P. I. , Siedlak, S. L. , Wang, X. , Santos, M. S. , Oliveira, C. R. , Tabaton, M. , … Perry, G. (2007). Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy, 3, 614–615. PubMed
Naruse, S. , Igarashi, S. , Furuya, T. , Kobayashi, H. , Miyatake, T. , & Tsuji, S. (1994). Structures of the human and mouse growth inhibitory factor‐encoding genes. Gene, 144, 283–287. PubMed
Nixon, RA. (2007). Autophagy, amyloidogenesis and Alzheimer disease. Journal of Cell Science, 120, 4081–4091. PubMed
Palacios, O. , Atrian, S. , & Capdevila, M. (2011). Zn‐ and Cu‐thioneins: A functional classification for metallothioneins? JBIC Journal of Biological Inorganic Chemistry, 16, 991–1009. PubMed
Roberts, B. R. , Ryan, T. M. , Bush, A. I. , Masters, C. L. , & Duce, J. A. (2012). The role of metallobiology and amyloid‐beta peptides in Alzheimer's disease. Journal of Neurochemistry, 120(Suppl 1), 149–166. PubMed
Roy, S. , Kumar, A. , Baig, M. H. , Masarik, M. , & Provaznik, I. (2015). Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecule based inhibitors against metallothionein‐III to study Alzheimer's disease. Methods, 83, 105–110. PubMed
Streit, W. J. (2004). Microglia and Alzheimer's disease pathogenesis. Journal of Neuroscience Research, 77, 1–8. PubMed
Teng, Y. H. , Li, J. P. , Liu, S. L. , Zou, X. , Fang, L. H. , Zhou, J. Y. , … Wang, R. P. (2016). Autophagy protects from raddeanin a‐induced apoptosis in SGC‐7901 human gastric cancer cells. Evidence‐Based Complementary and Alternative Medicine: eCAM, 2016, 1–8. PubMed PMC
Torres, K. , & Horwitz, S. B. (1998). Mechanisms of taxol‐induced cell death are concentration dependent. Cancer Research, 58, 3620–3626. PubMed
Uchida, Y. , Takio, K. , Titani, K. , Ihara, Y. , & Tomonaga, M. (1991). The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein‐like protein. Neuron, 7, 337–347. PubMed
Yu, W. H. , Lukiw, W. J. , Bergeron, C. , Niznik, H. B. , & Fraser, P. E. (2001). Metallothionein III is reduced in Alzheimer's disease. Brain Research, 894, 37–45. PubMed
Zatta, P. (2008). Metallothioneins in biochemistry and pathology (336 pp). Singapore: World Scientific Publishing Company. ISBN: 978‐981‐277‐893‐2.