The effect of Benzothiazolone-2 on the expression of Metallothionein-3 in modulating Alzheimer's disease

. 2017 Sep ; 7 (9) : e00799. [epub] 20170815

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28948092

INTRODUCTION: Metallothioneins (MTs) are a class of ubiquitously occurring low-molecular-weight cysteine- and metal-rich proteins containing sulfur-based metal clusters. MT-3 exhibits neuro-inhibitory activity. The possibility to enhance the expression of MT-3 or protect it from degradation is an attractive therapeutic target, because low levels of MT-3 were found in brains of Alzheimer's disease (AD) patients. OBJECTIVES: The primary objective of this study was to test an enhancement of MT-3 cellular concentration after MT-3 binding treatment, which could prevent MT-3 degradation. METHODS: MTT assay, flow-cytometry, fluorescence microscopy, quantitative real-time polymerase chain reaction, and immunodetection of MT3 were used for analysis of effect of STOCK1N-26544, STOCK1N-26929, and STOCK1N-72593 on immortalized human microglia-SV40 cell line. RESULTS: All three tested compounds enhanced concentration of MT-3 protein in cells and surprisingly also mRNA concentration. IC50 values of tested molecules exceeded about ten times the concentration that was needed for induction of MT-3 expression. The tested compound Benzothiazolone-2 enhanced apoptosis and necrosis, but it was not of severe effect. About 80% of cells were still viable. There was no serious ROS-generation and no severe decrease in mitochondria numbers or stress induced endoplasmic reticulum changes after test treatments. The selected compound showed stable hydrophobic and electrostatic interaction during MT-3 ligand interaction. CONCLUSION: Benzothiazolone-2 compounds significantly enhanced MT-3 protein and mRNA levels. The compounds can be looked upon as one of the probable lead compounds for future drug designing experiments in the treatment of Alzheimer's disease.

Zobrazit více v PubMed

Baker, N. A. , Sept, D. , Joseph, S. , Holst, M. J. , & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98, 10037–10041. PubMed PMC

Barnham, K. J. , Haeffner, F. , Ciccotosto, G. D. , Curtain, C. C. , Tew, D. , Mavros, C. , … Bush, A. I. (2004). Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease beta‐amyloid. FASEB Journal, 18, 1427–1429. PubMed

Berendsen, H. J. C. , van der Spoel, D. , & van Drunen, R. (1995). GROMACS: A message‐passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.

Bonda, D. J. , Lee, H. G. , Blair, J. A. , Zhu, X. , Perry, G. , & Smith, M. A. (2011). Role of metal dyshomeostasis in alzheimer disease. Metallomics, 3, 267–270. PubMed PMC

Bush, A. I. , & Tanzi, R. E. (2008). Therapeutics for Alzheimer's disease based on the metal hypothesis. Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics, 5, 421–432. PubMed PMC

Carrasco, J. , Giralt, M. , Molinero, A. , Penkowa, M. , Moos, T. , & Hidalgo, J. (1999). Metallothionein (MT)‐III: Generation of polyclonal antibodies, comparison with MT‐I+II in the freeze lesioned rat brain and in a bioassay with astrocytes, and analysis of Alzheimer's disease brains. Journal of Neurotrauma, 16, 1115–1129. PubMed

Garret, S. H. , Park, S. , Sens, M. A. , Somji, S. , Singh, R. K. , Namburi, V. B. , & Sens, D. A. (2005). Expression of metallothionein isoform 3 is restricted at the post transcriptional level in human bladder epithelial cells. Toxicological Sciences, 87, 66–74. PubMed

Haass, C. , & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer's amyloid beta‐peptide. Nature Reviews Molecular Cell Biology, 8, 101–112. PubMed

Iqbal, K. , Liu, F. , Gong, C. X. , Alonso Adel, C. , & Grundke‐Iqbal, I. (2009). Mechanisms of tau‐induced neurodegeneration. Acta Neuropathologica, 118, 53–69. PubMed PMC

Kemp, M. G. (2017). Crosstalk between apoptosis and autophagy: environmental Genotoxins, infection, and innate immunity. Journal of Cell Death, 9, 1–6. PubMed PMC

Kim, J. H. , Nam, Y. P. , Jeon, S. M. , Han, H. S. , & Suk, K. (2012). Amyloid neurotoxicity is attenuated by metallothionein: Dual mechanisms at work. Journal of Neurochemistry, 121, 751–762. PubMed

Kumari, R. , Kumar, R. , Open Source Drug Discovery Consortium , & Lynn, A. (2014). g_mmpbsa A GROMACS tool for high throughput MM PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962. PubMed

Lee, J. A. (2009). Autophagy in neurodegeneration: Two sides of the same coin. BMB Reports, 42, 324–330. PubMed

Lee, S. J. , Park, M. H. , Kim, H. J. , & Koh, J. Y. (2010). Metallothionein‐3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia, 58, 1186–1196. PubMed

Lindahl, E. , Berk, H. , & David, V. S. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.

Lovell, M. A. , Robertson, J. D. , Teesdale, W. J. , Campbell, J. L. , & Markesbery, W. R. (1998). Copper, iron and zinc in Alzheimer's disease senile plaques. Journal of the Neurological Sciences, 158, 47–52. PubMed

Martin, B. L. , Tokheim, A. M. , McCarthy, P. T. , Doms, B. S. , Davis, A. A. , & Armitage, I. M. (2006). Metallothionein‐3 and neuronal nitric oxide synthase levels in brains from the Tg2576 mouse model of Alzheimer's disease. Molecular and Cellular Biochemistry, 283, 129–137. PubMed

Miu, A. C. , & Benga, O. (2006). Aluminum and Alzheimer's disease: A new look. Journal of Alzheimer's Disease, 10, 179–201. PubMed

Miyoshi, N. , Watanabe, E. , Osawa, T. , Okuhira, M. , Murata, Y. , Ohshima, H. , & Nakamura, Y. (2008). ATP depletion alters the mode of cell death induced by benzyl isothiocyanate. Biochimica et Biophysica Acta, 10, 566–573. PubMed

Moreira, P. I. , Siedlak, S. L. , Wang, X. , Santos, M. S. , Oliveira, C. R. , Tabaton, M. , … Perry, G. (2007). Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy, 3, 614–615. PubMed

Naruse, S. , Igarashi, S. , Furuya, T. , Kobayashi, H. , Miyatake, T. , & Tsuji, S. (1994). Structures of the human and mouse growth inhibitory factor‐encoding genes. Gene, 144, 283–287. PubMed

Nixon, RA. (2007). Autophagy, amyloidogenesis and Alzheimer disease. Journal of Cell Science, 120, 4081–4091. PubMed

Palacios, O. , Atrian, S. , & Capdevila, M. (2011). Zn‐ and Cu‐thioneins: A functional classification for metallothioneins? JBIC Journal of Biological Inorganic Chemistry, 16, 991–1009. PubMed

Roberts, B. R. , Ryan, T. M. , Bush, A. I. , Masters, C. L. , & Duce, J. A. (2012). The role of metallobiology and amyloid‐beta peptides in Alzheimer's disease. Journal of Neurochemistry, 120(Suppl 1), 149–166. PubMed

Roy, S. , Kumar, A. , Baig, M. H. , Masarik, M. , & Provaznik, I. (2015). Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecule based inhibitors against metallothionein‐III to study Alzheimer's disease. Methods, 83, 105–110. PubMed

Streit, W. J. (2004). Microglia and Alzheimer's disease pathogenesis. Journal of Neuroscience Research, 77, 1–8. PubMed

Teng, Y. H. , Li, J. P. , Liu, S. L. , Zou, X. , Fang, L. H. , Zhou, J. Y. , … Wang, R. P. (2016). Autophagy protects from raddeanin a‐induced apoptosis in SGC‐7901 human gastric cancer cells. Evidence‐Based Complementary and Alternative Medicine: eCAM, 2016, 1–8. PubMed PMC

Torres, K. , & Horwitz, S. B. (1998). Mechanisms of taxol‐induced cell death are concentration dependent. Cancer Research, 58, 3620–3626. PubMed

Uchida, Y. , Takio, K. , Titani, K. , Ihara, Y. , & Tomonaga, M. (1991). The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein‐like protein. Neuron, 7, 337–347. PubMed

Yu, W. H. , Lukiw, W. J. , Bergeron, C. , Niznik, H. B. , & Fraser, P. E. (2001). Metallothionein III is reduced in Alzheimer's disease. Brain Research, 894, 37–45. PubMed

Zatta, P. (2008). Metallothioneins in biochemistry and pathology (336 pp). Singapore: World Scientific Publishing Company. ISBN: 978‐981‐277‐893‐2.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...