Changes in connectivity of the posterior default network node during visual processing in mild cognitive impairment: staged decline between normal aging and Alzheimer's disease
Language English Country Austria Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28965143
DOI
10.1007/s00702-017-1789-5
PII: 10.1007/s00702-017-1789-5
Knihovny.cz E-resources
- Keywords
- Dementia, Posterior cingulate, Precuneus, Psychophysiological interactions, Visual pathways, fMRI,
- MeSH
- Alzheimer Disease complications MeSH
- Cognitive Dysfunction diagnostic imaging etiology pathology MeSH
- Oxygen blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Models, Neurological MeSH
- Brain pathology MeSH
- Neural Pathways diagnostic imaging physiopathology MeSH
- Image Processing, Computer-Assisted MeSH
- Psychophysics MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Aging * MeSH
- Photic Stimulation MeSH
- Visual Perception physiology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Oxygen MeSH
Visual processing difficulties are often present in Alzheimer's disease (AD), even in its pre-dementia phase (i.e. in mild cognitive impairment, MCI). The default mode network (DMN) modulates the brain connectivity depending on the specific cognitive demand, including visual processes. The aim of the present study was to analyze specific changes in connectivity of the posterior DMN node (i.e. the posterior cingulate cortex and precuneus, PCC/P) associated with visual processing in 17 MCI patients and 15 AD patients as compared to 18 healthy controls (HC) using functional magnetic resonance imaging. We used psychophysiological interaction (PPI) analysis to detect specific alterations in PCC connectivity associated with visual processing while controlling for brain atrophy. In the HC group, we observed physiological changes in PCC connectivity in ventral visual stream areas and with PCC/P during the visual task, reflecting the successful involvement of these regions in visual processing. In the MCI group, the PCC connectivity changes were disturbed and remained significant only with the anterior precuneus. In between-group comparison, we observed significant PPI effects in the right superior temporal gyrus in both MCI and AD as compared to HC. This change in connectivity may reflect ineffective "compensatory" mechanism present in the early pre-dementia stages of AD or abnormal modulation of brain connectivity due to the disease pathology. With the disease progression, these changes become more evident but less efficient in terms of compensation. This approach can separate the MCI from HC with 77% sensitivity and 89% specificity.
See more in PubMed
Curr Neurol Neurosci Rep. 2014 Oct;14 (10 ):491 PubMed
Neuropsychologia. 2013 Sep;51(11):2281-93 PubMed
J Neural Transm (Vienna). 2012 Apr;119(4):443-54 PubMed
Neurobiol Dis. 2008 Sep;31(3):287-97 PubMed
Cortex. 2015 Mar;64:394-406 PubMed
PeerJ. 2013 Aug 20;1:e135 PubMed
Psychiatry Res. 2008 Aug 30;163(3):248-59 PubMed
J Neurosci. 2012 Jun 27;32(26):8890-9 PubMed
Neurobiol Aging. 2015 Oct;36(10):2678-86 PubMed
Alzheimers Dement. 2013 May;9(3):284-94 PubMed
J Neurosci. 2005 Aug 24;25(34):7709-17 PubMed
J Alzheimers Dis. 2010;22(2):523-39 PubMed
J Alzheimers Dis. 2014;42 Suppl 3:S217-28 PubMed
Neurobiol Aging. 2012 Apr;33(4):828.e19-30 PubMed
J Alzheimers Dis. 2014;41(4):1229-38 PubMed
J Alzheimers Dis. 2010;21(1):15-34 PubMed
Brain. 2006 Mar;129(Pt 3):564-83 PubMed
Neurodegener Dis. 2012;10(1-4):232-7 PubMed
Neuroimage. 2002 Nov;17(3):1403-14 PubMed
Hum Brain Mapp. 2011 Jul;32(7):1029-35 PubMed
Neurobiol Aging. 2012 Sep;33(9):2018-28 PubMed
Alzheimers Dement. 2011 May;7(3):263-9 PubMed
Prev Vet Med. 2000 May 30;45(1-2):23-41 PubMed
Nat Rev Neurosci. 2009 Mar;10(3):186-98 PubMed
Radiology. 2010 Jan;254(1):219-26 PubMed
Behav Neurol. 2009;21(1):63-75 PubMed
Arch Neurol. 2001 Dec;58(12):1985-92 PubMed
Neuroimage. 2003 Dec;20(4):1934-43 PubMed
J Neurophysiol. 1981 Aug;46(2):369-84 PubMed
Neuroimage. 2005 Oct 1;27(4):824-34 PubMed
PLoS Biol. 2008 Jul 1;6(7):e159 PubMed
Neurosci Biobehav Rev. 2012 Jan;36(1):297-309 PubMed
Arch Neurol. 2011 Sep;68(9):1131-6 PubMed
Neurology. 2011 Oct 18;77(16):1524-31 PubMed
Neurology. 2011 Feb 8;76(6):511-7 PubMed
Neurosci Biobehav Rev. 2013 Jun;37(5):753-65 PubMed
Neurology. 2000 Dec 12;55(11):1613-20 PubMed
Eur Radiol. 2006 Jan;16(1):193-206 PubMed
Hum Brain Mapp. 2010 Jan;31(1):126-39 PubMed
Nat Rev Neurosci. 2001 Oct;2(10 ):685-94 PubMed
Hum Brain Mapp. 2009 Feb;30(2):625-37 PubMed
Alzheimers Dement. 2011 May;7(3):270-9 PubMed
Psychiatry Res. 2007 Oct 15;156(1):43-57 PubMed
J Int Neuropsychol Soc. 2008 Nov;14 (6):1034-45 PubMed
Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82 PubMed
Neuropsychologia. 2007 Apr 9;45(8):1948-60 PubMed
Neurobiol Aging. 2011 Jul;32(7):1219-30 PubMed
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14 PubMed
Brain. 2004 Oct;127(Pt 10):2286-98 PubMed
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 PubMed
Lancet Neurol. 2013 Feb;12(2):207-16 PubMed
J Neurosci. 2009 Feb 11;29(6):1860-73 PubMed
J Alzheimers Dis. 2012;31 Suppl 3:S117-35 PubMed
Parkinsons Dis. 2015;2015:579417 PubMed
Front Syst Neurosci. 2010 Sep 17;4:null PubMed