The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29084846
PubMed Central
PMC5743081
DOI
10.1074/jbc.m117.801167
PII: S0021-9258(20)32757-5
Knihovny.cz E-zdroje
- Klíčová slova
- TRP channels, ankyrin repeat domain, epidermal growth factor receptor (EGFR), extracellular-signal-regulated kinase (ERK), keratinocyte, phosphorylation, transient receptor potential channels (TRP channels),
- MeSH
- cymeny MeSH
- epidermální růstový faktor metabolismus MeSH
- erbB receptory agonisté metabolismus MeSH
- fosforylace účinky léků MeSH
- HEK293 buňky MeSH
- interakční proteinové domény a motivy MeSH
- kationtové kanály TRPV agonisté chemie genetika metabolismus MeSH
- keratinocyty účinky léků enzymologie metabolismus MeSH
- lidé MeSH
- MAP kinasový signální systém * účinky léků MeSH
- metoda terčíkového zámku MeSH
- mitogenem aktivovaná proteinkinasa 3 chemie genetika metabolismus MeSH
- modulátory membránového transportu farmakologie MeSH
- monoterpeny farmakologie MeSH
- mutace MeSH
- mutageneze cílená MeSH
- posttranslační úpravy proteinů účinky léků MeSH
- rekombinantní proteiny chemie metabolismus MeSH
- sloučeniny boru farmakologie MeSH
- threonin metabolismus MeSH
- transformované buněčné linie MeSH
- upregulace * účinky léků MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-aminoethoxydiphenyl borate MeSH Prohlížeč
- carvacrol MeSH Prohlížeč
- cymeny MeSH
- EGFR protein, human MeSH Prohlížeč
- epidermální růstový faktor MeSH
- erbB receptory MeSH
- kationtové kanály TRPV MeSH
- mitogenem aktivovaná proteinkinasa 3 MeSH
- modulátory membránového transportu MeSH
- monoterpeny MeSH
- rekombinantní proteiny MeSH
- sloučeniny boru MeSH
- threonin MeSH
- TRPV3 protein, human MeSH Prohlížeč
- zelené fluorescenční proteiny MeSH
The transient receptor potential vanilloid 3 (TRPV3) channel is a Ca2+-permeable thermosensitive ion channel widely expressed in keratinocytes, where together with epidermal growth factor receptor (EGFR) forms a signaling complex regulating epidermal homeostasis. Proper signaling through this complex is achieved and maintained via several pathways in which TRPV3 activation is absolutely required. Results of recent studies have suggested that low-level constitutive activity of TRPV3 induces EGFR-dependent signaling that, in turn, amplifies TRPV3 via activation of the mitogen-activated protein kinase ERK in a positive feedback loop. Here, we explored the molecular mechanism that increases TRPV3 activity through EGFR activation. We used mutagenesis and whole-cell patch clamp experiments on TRPV3 channels endogenously expressed in an immortalized human keratinocyte cell line (HaCaT) and in transiently transfected HEK293T cells and found that the sensitizing effect of EGFR on TRPV3 is mediated by ERK. We observed that ERK-mediated phosphorylation of TRPV3 alters its responsiveness to repeated chemical stimuli. Among several putative ERK phosphorylation sites, we identified threonine 264 in the N-terminal ankyrin repeat domain as the most critical site for the ERK-dependent modulation of TRPV3 channel activity. Of note, Thr264 is in close vicinity to a structurally and functionally important TRPV3 region comprising an atypical finger 3 and oxygen-dependent hydroxylation site. In summary, our findings indicate that Thr264 in TRPV3 is a key ERK phosphorylation site mediating EGFR-induced sensitization of the channel to stimulate signaling pathways involved in regulating skin homeostasis.
Zobrazit více v PubMed
Peier A. M., Reeve A. J., Andersson D. A., Moqrich A., Earley T. J., Hergarden A. C., Story G. M., Colley S., Hogenesch J. B., McIntyre P., Bevan S., and Patapoutian A. (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 PubMed
Smith G. D., Gunthorpe M. J., Kelsell R. E., Hayes P. D., Reilly P., Facer P., Wright J. E., Jerman J. C., Walhin J. P., Ooi L., Egerton J., Charles K. J., Smart D., Randall A. D., Anand P., and Davis J. B. (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 PubMed
Xu H., Ramsey I. S., Kotecha S. A., Moran M. M., Chong J. A., Lawson D., Ge P., Lilly J., Silos-Santiago I., Xie Y., DiStefano P. S., Curtis R., and Clapham D. E. (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 PubMed
Nilius B., and Biró T. (2013) TRPV3: a “more than skinny” channel. Exp. Dermatol. 22, 447–452 PubMed
Nilius B., Biró T., and Owsianik G. (2014) TRPV3: time to decipher a poorly understood family member! J. Physiol. 592, 295–304 PubMed PMC
Luo J., and Hu H. (2014) Thermally activated TRPV3 channels. Curr. Top. Membr. 74, 325–364 PubMed
Yang P., and Zhu M. X. (2014) TRPV3 Handb. Exp. Pharmacol. 222, 273–291 PubMed
Bang S., Yoo S., Yang T. J., Cho H., and Hwang S. W. (2010) Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J. Biol. Chem. 285, 19362–19371 PubMed PMC
Phelps C. B., Wang R. R., Choo S. S., and Gaudet R. (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J. Biol. Chem. 285, 731–740 PubMed PMC
Xiao R., Tang J., Wang C., Colton C. K., Tian J., and Zhu M. X. (2008) Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J. Biol. Chem. 283, 6162–6174 PubMed PMC
Hu H. Z., Xiao R., Wang C., Gao N., Colton C. K., Wood J. D., and Zhu M. X. (2006) Potentiation of TRPV3 channel function by unsaturated fatty acids. J. Cell. Physiol. 208, 201–212 PubMed PMC
Doerner J. F., Hatt H., and Ramsey I. S. (2011) Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J. Gen. Physiol. 137, 271–288 PubMed PMC
Liu B., and Qin F. (2017) Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3. Proc. Natl. Acad. Sci. U.S.A. 114, 1589–1594 PubMed PMC
Liu B., Yao J., Zhu M. X., and Qin F. (2011) Hysteresis of gating underlines sensitization of TRPV3 channels. J. Gen. Physiol. 138, 509–520 PubMed PMC
Billen B., Brams M., Debaveye S., Remeeva A., Alpizar Y. A., Waelkens E., Kreir M., Brüggemann A., Talavera K., Nilius B., Voets T., and Ulens C. (2015) Different ligands of the TRPV3 cation channel cause distinct conformational changes as revealed by intrinsic tryptophan fluorescence quenching. J. Biol. Chem. 290, 12964–12974 PubMed PMC
Lin Z., Chen Q., Lee M., Cao X., Zhang J., Ma D., Chen L., Hu X., Wang H., Wang X., Zhang P., Liu X., Guan L., Tang Y., Yang H., Tu P., Bu D., Zhu X., Wang K., Li R., and Yang Y. (2012) Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am. J. Hum. Genet. 90, 558–564 PubMed PMC
Lai-Cheong J. E., Sethuraman G., Ramam M., Stone K., Simpson M. A., and McGrath J. A. (2012) Recurrent heterozygous missense mutation, p.Gly573Ser, in the TRPV3 gene in an Indian boy with sporadic Olmsted syndrome. Br. J. Dermatol. 167, 440–442 PubMed
Moqrich A., Hwang S. W., Earley T. J., Petrus M. J., Murray A. N., Spencer K. S., Andahazy M., Story G. M., and Patapoutian A. (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 PubMed
Cheng X., Jin J., Hu L., Shen D., Dong X. P., Samie M. A., Knoff J., Eisinger B., Liu M. L., Huang S. M., Caterina M. J., Dempsey P., Michael L. E., Dlugosz A. A., Andrews N. C., Clapham D. E., and Xu H. (2010) TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141, 331–343 PubMed PMC
Xu H., Delling M., Jun J. C., and Clapham D. E. (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 9, 628–635 PubMed
Buscà R., Pouysségur J., and Lenormand P. (2016) ERK1 and ERK2 MAP kinases: specific roles or functional redundancy? Front. Cell. Dev. Biol. 4, 53. PubMed PMC
Stamboulian S., Choi J. S., Ahn H. S., Chang Y. W., Tyrrell L., Black J. A., Waxman S. G., and Dib-Hajj S. D. (2010) ERK1/2 mitogen-activated protein kinase phosphorylates sodium channel Na(v)1.7 and alters its gating properties. J. Neurosci. 30, 1637–1647 PubMed PMC
Martin S. W., Butcher A. J., Berrow N. S., Richards M. W., Paddon R. E., Turner D. J., Dolphin A. C., Sihra T. S., and Fitzgerald E. M. (2006) Phosphorylation sites on calcium channel α1 and β subunits regulate ERK-dependent modulation of neuronal N-type calcium channels. Cell Calcium 39, 275–292 PubMed
Shen B., Kwan H. Y., Ma X., Wong C. O., Du J., Huang Y., and Yao X. (2011) cAMP activates TRPC6 channels via the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)-mitogen-activated protein kinase kinase (MEK)-ERK1/2 signaling pathway. J. Biol. Chem. 286, 19439–19445 PubMed PMC
Hu H. J., Alter B. J., Carrasquillo Y., Qiu C. S., and Gereau R. W. 4th (2007) Metabotropic glutamate receptor 5 modulates nociceptive plasticity via extracellular signal-regulated kinase-Kv4.2 signaling in spinal cord dorsal horn neurons. J. Neurosci. 27, 13181–13191 PubMed PMC
Shi D. J., Ye S., Cao X., Zhang R., and Wang K. (2013) Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 reveals unique conformation of finger 3 loop critical for channel function. Protein Cell 4, 942–950 PubMed PMC
Karttunen S., Duffield M., Scrimgeour N. R., Squires L., Lim W. L., Dallas M. L., Scragg J. L., Chicher J., Dave K. A., Whitelaw M. L., Peers C., Gorman J. J., Gleadle J. M., Rychkov G. Y., and Peet D. J. (2015) Oxygen-dependent hydroxylation by FIH regulates the TRPV3 ion channel. J. Cell Sci. 128, 225–231 PubMed
Hornbeck P. V., Zhang B., Murray B., Kornhauser J. M., Latham V., and Skrzypek E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–520 PubMed PMC
Benedikt J., Teisinger J., Vyklicky L., and Vlachova V. (2007) Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate. J. Neurochem. 100, 211–224 PubMed
Dittert I., Benedikt J., Vyklický L., Zimmermann K., Reeh P. W., and Vlachová V. (2006) Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods 151, 178–185 PubMed
PDB
4N5Q