Newly designed 11-gene panel reveals first case of hereditary amyloidosis captured by massive parallel sequencing

. 2018 Aug ; 71 (8) : 687-694. [epub] 20180217

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29455155
Odkazy

PubMed 29455155
PubMed Central PMC6204976
DOI 10.1136/jclinpath-2017-204978
PII: jclinpath-2017-204978
Knihovny.cz E-zdroje

AIMS: Amyloidosis is caused by deposition of abnormal protein fibrils, leading to damage of organ function. Hereditary amyloidosis represents a monogenic disease caused by germline mutations in 11 amyloidogenic precursor protein genes. One of the important but non-specific symptoms of amyloidosis is hypertrophic cardiomyopathy. Diagnostics of hereditary amyloidosis is complicated and the real cause can remain overlooked. We aimed to design hereditary amyloidosis gene panel and to introduce new next-generation sequencing (NGS) approach to investigate hereditary amyloidosis in a cohort of patients with hypertrophic cardiomyopathy of unknown significance. METHODS: Design of target enrichment DNA library preparation using Haloplex Custom Kit containing 11 amyloidogenic genes was followed by MiSeq Illumina sequencing and bioinformatics identification of germline variants using tool VarScan in a cohort of 40 patients. RESULTS: We present design of NGS panel for 11 genes (TTR, FGA, APOA1, APOA2, LYZ, GSN, CST3, PRNP, APP, B2M, ITM2B) connected to various forms of amyloidosis. We detected one mutation, which is responsible for hereditary amyloidosis. Some other single nucleotide variants are so far undescribed or rare variants or represent common polymorphisms in European population. CONCLUSIONS: We report one positive case of hereditary amyloidosis in a cohort of patients with hypertrophic cardiomyopathy of unknown significance and set up first panel for NGS in hereditary amyloidosis. This work may facilitate successful implementation of the NGS method by other researchers or clinicians and may improve the diagnostic process after validation.

Zobrazit více v PubMed

Narotsky DL, Castano A, Weinsaft JW, et al. . Wild-type transthyretin cardiac amyloidosis: novel insights from advanced imaging. Can J Cardiol 2016;32:1166.e1–1166.e10. 10.1016/j.cjca.2016.05.008 PubMed DOI PMC

Nuvolone M, Merlini G. Systemic amyloidosis: novel therapies and role of biomarkers. Nephrol Dial Transplant 2017;32:770–80. 10.1093/ndt/gfw305 PubMed DOI

Gillmore JD, Hawkins PN. Pathophysiology and treatment of systemic amyloidosis. Nat Rev Nephrol 2013;9:574–86. 10.1038/nrneph.2013.171 PubMed DOI

Sipe JD, Benson MD, Buxbaum JN, et al. . Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification international society of amyloidosis 2016 nomenclature guidelines. Amyloid 2016;23:209–13. 10.1080/13506129.2016.1257986 PubMed DOI

Sipe JD, Benson MD, Buxbaum JN, et al. . Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the international society of amyloidosis. Amyloid 2010;17(3-4):101–4. 10.3109/13506129.2010.526812 PubMed DOI

Conceição I, De Carvalho M. Clinical variability in type I familial amyloid polyneuropathy (Val30Met): comparison between late- and early-onset cases in Portugal. Muscle Nerve 2007;35:116–8. 10.1002/mus.20644 PubMed DOI

Ando Y, Coelho T, Berk JL, et al. . Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J Rare Dis 2013;8:31–172. 10.1186/1750-1172-8-31 PubMed DOI PMC

Parman Y, Adams D, Obici L, et al. . Sixty years of transthyretin familial amyloid polyneuropathy (TTR-FAP) in Europe: where are we now? A European network approach to defining the epidemiology and management patterns for TTR-FAP. Curr Opin Neurol 2016;29(Suppl 1):S3–13. 10.1097/WCO.0000000000000288 PubMed DOI PMC

Fikrle M, Paleček T, Kuchynka P, et al. . Cardiac amyloidosis: A comprehensive review. Cor Vasa 2013;55:e60–e75. 10.1016/j.crvasa.2012.11.018 DOI

Rowczenio DM, Noor I, Gillmore JD, et al. . Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum Mutat 2014;35:E2403–E2412. 10.1002/humu.22619 PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 2014;30:2843–51. 10.1093/bioinformatics/btu356 PubMed DOI PMC

McKenna A, Hanna M, Banks E, et al. . The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–303. 10.1101/gr.107524.110 PubMed DOI PMC

Li H, Handsaker B, Wysoker A, et al. . The sequence alignment/map format and samtools. Bioinformatics 2009;25:2078–9. 10.1093/bioinformatics/btp352 PubMed DOI PMC

Koboldt DC, Zhang Q, Larson DE, et al. . VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568–76. 10.1101/gr.129684.111 PubMed DOI PMC

Liu X, Wu C, Li C, et al. . dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat 2016;37:235–41. 10.1002/humu.22932 PubMed DOI PMC

Schwarz JM, Cooper DN, Schuelke M, et al. . Mutationtaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014;11:361–2. 10.1038/nmeth.2890 PubMed DOI

Choi Y, Sims GE, Murphy S, et al. . Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012;7:e46688 10.1371/journal.pone.0046688 PubMed DOI PMC

Robinson JT, Thorvaldsdóttir H, Winckler W, et al. . Integrative genomics viewer. Nat Biotechnol 2011;29:24–6. 10.1038/nbt.1754 PubMed DOI PMC

Thorvaldsdóttir H, Robinson JT, Mesirov JP, et al. . Integrative genomics viewer (igv): high-performance genomics data visualization and exploration. Brief Bioinform 2013;14:178–92. 10.1093/bib/bbs017 PubMed DOI PMC

Auton A, Brooks LD, Durbin RM, et al. . A global reference for human genetic variation. Nature 2015;526:68–74. 10.1038/nature15393 PubMed DOI PMC

Briani C, Cavallaro T, Ferrari S, et al. . Sporadic transthyretin amyloidosis with a novel TTR gene mutation misdiagnosed as primary amyloidosis. J Neurol 2012;259:2226–8. 10.1007/s00415-012-6529-z PubMed DOI

Pfeffer G, Elliott HR, Griffin H, et al. . Titin mutation segregates with hereditary myopathy with early respiratory failure. Brain 2012;135:1695–713. 10.1093/brain/aws102 PubMed DOI PMC

Rapezzi C, Lorenzini M, Longhi S, et al. . Cardiac amyloidosis: the great pretender. Heart Fail Rev 2015;20:117–24. 10.1007/s10741-015-9480-0 PubMed DOI

Sonati T, Reimann RR, Falsig J, et al. . The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 2013;501:102–6. 10.1038/nature12402 PubMed DOI

Perry RT, Go RC, Harrell LE, et al. . SSCP analysis and sequencing of the human prion protein gene (PRNP) detects two different 24 bp deletions in an atypical Alzheimer’s disease family. Am J Med Genet 1995;60:12–18. 10.1002/ajmg.1320600104 PubMed DOI

Sant’Anna R, Navarro S, Ventura S, et al. . Amyloid properties of the leader peptide of variant B cystatin C: implications for alzheimer and macular degeneration. FEBS Lett 2016;590:644–54. 10.1002/1873-3468.12093 PubMed DOI

Ikejiri M, Wada H, Kamimoto Y, et al. . Protection from pregnancy loss in women with hereditary thrombophilia when associated with fibrinogen polymorphism Thr331Ala. Clin Appl Thromb Hemost 2017;23 10.1177/1076029616645400 PubMed DOI

Ko YL, Hsu LA, Hsu TS, et al. . Functional polymorphisms of FGA, encoding alpha fibrinogen, are associated with susceptibility to venous thromboembolism in a Taiwanese population. Hum Genet 2006;119(1-2):84–91. 10.1007/s00439-005-0102-0 PubMed DOI

Laurila K, Vihinen M. Prediction of disease-related mutations affecting protein localization. BMC Genomics 2009;10:122 10.1186/1471-2164-10-122 PubMed DOI PMC

Symoens S, Malfait F, Renard M, et al. . COL5A1 signal peptide mutations interfere with protein secretion and cause classic ehlers-danlos syndrome. Hum Mutat 2009;30:E395–E403. 10.1002/humu.20887 PubMed DOI

Shih-Jen Hwang GC, Yao C, Liu C, et al. . Abstract 19305: higher levels of beta-2 microglobulin predict incident hypertension. Circulation 2016;134(Suppl 1):134.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...