Cultured bloodstream Trypanosoma brucei adapt to life without mitochondrial translation release factor 1
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29572512
PubMed Central
PMC5865105
DOI
10.1038/s41598-018-23472-6
PII: 10.1038/s41598-018-23472-6
Knihovny.cz E-resources
- MeSH
- Adaptation, Physiological * MeSH
- Membrane Potential, Mitochondrial genetics MeSH
- Mitochondrial Proteins genetics metabolism MeSH
- Mitochondria * genetics metabolism MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Oxidative Phosphorylation MeSH
- Proton-Translocating ATPases genetics metabolism MeSH
- Protozoan Proteins genetics metabolism MeSH
- Life Cycle Stages * MeSH
- Trypanosoma brucei brucei * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Mitochondrial Proteins MeSH
- Proton-Translocating ATPases MeSH
- Protozoan Proteins MeSH
Trypanosoma brucei is an extracellular parasite that alternates between an insect vector (procyclic form) and the bloodstream of a mammalian host (bloodstream form). While it was previously reported that mitochondrial release factor 1 (TbMrf1) is essential in cultured procyclic form cells, we demonstrate here that in vitro bloodstream form cells can tolerate the elimination of TbMrf1. Therefore, we explored if this discrepancy is due to the unique bioenergetics of the parasite since procyclic form cells rely on oxidative phosphorylation; whereas bloodstream form cells utilize glycolysis for ATP production and FoF1-ATPase to maintain the essential mitochondrial membrane potential. The observed disruption of intact bloodstream form FoF1-ATPases serves as a proxy to indicate that the translation of its mitochondrially encoded subunit A6 is impaired without TbMrf1. While these null mutants have a decreased mitochondrial membrane potential, they have adapted by increasing their dependence on the electrogenic contributions of the ADP/ATP carrier to maintain the mitochondrial membrane potential above the minimum threshold required for T. brucei viability in vitro. However, this inefficient compensatory mechanism results in avirulent mutants in mice. Finally, the depletion of the codon-independent release factor TbPth4 in the TbMrf1 knockouts further exacerbates the characterized mitchondrial phenotypes.
Central European Institute of Technology Masaryk University Brno Czech Republic
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Parasitology Biology Centre ASCR Ceske Budejovice Czech Republic
See more in PubMed
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol. 2015;200:30–40. doi: 10.1016/j.molbiopara.2015.01.006. PubMed DOI PMC
Jensen RE, Englund PT. Network news: the replication of kinetoplast DNA. Annu Rev Microbiol. 2012;66:473–491. doi: 10.1146/annurev-micro-092611-150057. PubMed DOI
Read LK, Lukes J, Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out . Wiley interdisciplinary reviews. RNA. 2016;7:33–51. doi: 10.1002/wrna.1313. PubMed DOI PMC
Blum B, Bakalara N, Simpson L. A model for RNA editing in kinetoplastid mitochondria: “guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell. 1990;60:189–198. doi: 10.1016/0092-8674(90)90735-W. PubMed DOI
Seiwert SD, Heidmann S, Stuart K. Direct visualization of uridylate deletion in vitro suggests a mechanism for kinetoplastid RNA editing. Cell. 1996;84:831–841. doi: 10.1016/S0092-8674(00)81062-4. PubMed DOI
Aphasizheva I, et al. Ribosome-associated pentatricopeptide repeat proteins function as translational activators in mitochondria of trypanosomes. Mol Microbiol. 2016;99:1043–1058. doi: 10.1111/mmi.13287. PubMed DOI PMC
Aphasizheva I, Maslov DA, Aphasizhev R. Kinetoplast DNA-encoded ribosomal protein S12: A possible functional link between mitochondrial RNA editing and translation in Trypanosoma brucei. RNA Biol. 2013;10:1679–1688. doi: 10.4161/rna.26733. PubMed DOI PMC
Zikova A, et al. Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol Cell Proteomics. 2008;7:1286–1296. doi: 10.1074/mcp.M700490-MCP200. PubMed DOI PMC
de la Cruz VF, Lake JA, Simpson AM, Simpson L. A minimal ribosomal RNA: sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae. Proc Natl Acad Sci USA. 1985;82:1401–1405. doi: 10.1073/pnas.82.5.1401. PubMed DOI PMC
de la Cruz VF, Simpson AM, Lake JA, Simpson L. Primary sequence and partial secondary structure of the 12S kinetoplast (mitochondrial) ribosomal RNA from Leishmania tarentolae: conservation of peptidyl-transferase structural elements. Nucleic Acids Res. 1985;13:2337–2356. doi: 10.1093/nar/13.7.2337. PubMed DOI PMC
Sharma MR, Booth TM, Simpson L, Maslov DA, Agrawal RK. Structure of a mitochondrial ribosome with minimal RNA. Proc Natl Acad Sci USA. 2009;106:9637–9642. doi: 10.1073/pnas.0901631106. PubMed DOI PMC
Hancock K, Hajduk SL. The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J Biol Chem. 1990;265:19208–19215. PubMed
Schneider A. Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu Rev Biochem. 2011;80:1033–1053. doi: 10.1146/annurev-biochem-060109-092838. PubMed DOI
Maslov DA, et al. An intergenic G-rich region in Leishmania tarentolae kinetoplast maxicircle DNA is a pan-edited cryptogene encoding ribosomal protein S12. Mol Cell Biol. 1992;12:56–67. doi: 10.1128/MCB.12.1.56. PubMed DOI PMC
Ogle JM, et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001;292:897–902. doi: 10.1126/science.1060612. PubMed DOI
Ogle JM, Ramakrishnan V. Structural insights into translational fidelity. Annu Rev Biochem. 2005;74:129–177. doi: 10.1146/annurev.biochem.74.061903.155440. PubMed DOI
Schmeing TM, et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science. 2009;326:688–694. doi: 10.1126/science.1179700. PubMed DOI PMC
Cukras AR, Southworth DR, Brunelle JL, Culver GM, Green R. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex. Mol Cell. 2003;12:321–328. doi: 10.1016/S1097-2765(03)00275-2. PubMed DOI
Horvath A, Nebohacova M, Lukes J, Maslov DA. Unusual polypeptide synthesis in the kinetoplast-mitochondria from Leishmania tarentolae. Identification of individual de novo translation products. J Biol Chem. 2002;277:7222–7230. doi: 10.1074/jbc.M109715200. PubMed DOI
Skodova-Sverakova I, Horvath A, Maslov DA. Identification of the mitochondrially encoded subunit 6 of FF ATPase in Trypanosoma brucei. Mol Biochem Parasitol. 2015;201:135–138. doi: 10.1016/j.molbiopara.2015.08.002. PubMed DOI PMC
Dean S, Gould MK, Dewar CE, Schnaufer AC. Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc Natl Acad Sci USA. 2013;110:14741–14746. doi: 10.1073/pnas.1305404110. PubMed DOI PMC
Tielens AG, van Hellemond JJ. Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol. 2009;25:482–490. doi: 10.1016/j.pt.2009.07.007. PubMed DOI
Clarkson AB, Jr., Bienen EJ, Pollakis G, Grady RW. Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem. 1989;264:17770–17776. PubMed
Chaudhuri M, Ajayi W, Hill GC. Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. Mol Biochem Parasitol. 1998;95:53–68. doi: 10.1016/S0166-6851(98)00091-7. PubMed DOI
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 2005;24:4029–4040. doi: 10.1038/sj.emboj.7600862. PubMed DOI PMC
Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukes J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci USA. 2008;105:1999–2004. doi: 10.1073/pnas.0711799105. PubMed DOI PMC
Pena-Diaz P, et al. Functional Characterisation of TbMCP5, a Conserved and Essential ADP/ATP Carrier Present in the Mitochondrion of the Human Pathogen Trypanosoma brucei. J Biol Chem. 2012 PubMed PMC
Gnipova A, et al. The ADP/ATP carrier and its relationship to oxidative phosphorylation in ancestral protist trypanosoma brucei. Eukaryot Cell. 2015;14:297–310. doi: 10.1128/EC.00238-14. PubMed DOI PMC
Subrtova K, Panicucci B, Zikova A. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog. 2015;11:e1004660. doi: 10.1371/journal.ppat.1004660. PubMed DOI PMC
Ito K, Uno M, Nakamura Y. A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature. 2000;403:680–684. doi: 10.1038/35001115. PubMed DOI
Nakamura Y, Ito K, Ehrenberg M. Mimicry grasps reality in translation termination. Cell. 2000;101:349–352. doi: 10.1016/S0092-8674(00)80845-4. PubMed DOI
Frolova LY, Merkulova TI, Kisselev LL. Translation termination in eukaryotes: polypeptide release factor eRF1 is composed of functionally and structurally distinct domains. RNA. 2000;6:381–390. doi: 10.1017/S135583820099143X. PubMed DOI PMC
Seit-Nebi A, Frolova L, Justesen J, Kisselev L. Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res. 2001;29:3982–3987. doi: 10.1093/nar/29.19.3982. PubMed DOI PMC
Soleimanpour-Lichaei HR, et al. mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG. Mol Cell. 2007;27:745–757. doi: 10.1016/j.molcel.2007.06.031. PubMed DOI PMC
Pel HJ, Maat C, Rep M, Grivell LA. The yeast nuclear gene MRF1 encodes a mitochondrial peptide chain release factor and cures several mitochondrial RNA splicing defects. Nucleic Acids Res. 1992;20:6339–6346. doi: 10.1093/nar/20.23.6339. PubMed DOI PMC
Dujeancourt L, Richter R, Chrzanowska-Lightowlers ZM, Bonnefoy N, Herbert CJ. Interactions between peptidyl tRNA hydrolase homologs and the ribosomal release factor Mrf1 in S. pombe mitochondria. Mitochondrion. 2013;13:871–880. doi: 10.1016/j.mito.2013.07.115. PubMed DOI PMC
Richter R, et al. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J. 2010;29:1116–1125. doi: 10.1038/emboj.2010.14. PubMed DOI PMC
Kehrein K, et al. Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies. Cell reports. 2015 PubMed
Cristodero M, Seebeck T, Schneider A. Mitochondrial translation is essential in bloodstream forms of Trypanosoma brucei. Mol Microbiol. 2010;78:757–769. doi: 10.1111/j.1365-2958.2010.07368.x. PubMed DOI
Cristodero M, et al. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function. Mol Microbiol. 2013;90:744–755. doi: 10.1111/mmi.12397. PubMed DOI
Wittig I, et al. Assembly and oligomerization of human ATP synthase lacking mitochondrial subunits a and A6L. Biochim Biophys Acta. 2010;1797:1004–1011. doi: 10.1016/j.bbabio.2010.02.021. PubMed DOI
Hashimi H, et al. The assembly of F(1)F(O)-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei. Int J Parasitol. 2010;40:45–54. doi: 10.1016/j.ijpara.2009.07.005. PubMed DOI
Symersky J, Osowski D, Walters DE, Mueller DM. Oligomycin frames a common drug-binding site in the ATP synthase. Proc Natl Acad Sci USA. 2012;109:13961–13965. doi: 10.1073/pnas.1207912109. PubMed DOI PMC
Gahura, O. et al. The F1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J, 10.1111/febs.14364 (2017). PubMed
Carnes J, et al. Genome and Phylogenetic Analyses of Trypanosoma evansi Reveal Extensive Similarity to T. brucei and Multiple Independent Origins for Dyskinetoplasty. PLoS Negl Trop Dis. 2015;9:e3404. doi: 10.1371/journal.pntd.0003404. PubMed DOI PMC
He, J. et al. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci USA, 10.1073/pnas.1702357114 (2017). PubMed PMC
Martin J, Mahlke K, Pfanner N. Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. J Biol Chem. 1991;266:18051–18057. PubMed
Mazet M, et al. Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability. PLoS Negl Trop Dis. 2013;7:e2587. doi: 10.1371/journal.pntd.0002587. PubMed DOI PMC
Engstler M, et al. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell. 2007;131:505–515. doi: 10.1016/j.cell.2007.08.046. PubMed DOI
Akabane S, Ueda T, Nierhaus KH, Takeuchi N. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLoS genetics. 2014;10:e1004616. doi: 10.1371/journal.pgen.1004616. PubMed DOI PMC
Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res. 2011;39:1739–1748. doi: 10.1093/nar/gkq1097. PubMed DOI PMC
Borst P, Fase-Fowler F, Gibson WC. Kinetoplast DNA of Trypanosoma evansi. Mol Biochem Parasitol. 1987;23:31–38. doi: 10.1016/0166-6851(87)90184-8. PubMed DOI
Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999;99:89–101. doi: 10.1016/S0166-6851(99)00002-X. PubMed DOI
Flaspohler JA, Jensen BC, Saveria T, Kifer CT, Parsons M. A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell. 2010;9:1702–1710. doi: 10.1128/EC.00106-10. PubMed DOI PMC
Acestor N, Panigrahi AK, Ogata Y, Anupama A, Stuart KD. Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics. 2009;9:5497–5508. doi: 10.1002/pmic.200900354. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Panigrahi AK, et al. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics. 2008;7:534–545. doi: 10.1074/mcp.M700430-MCP200. PubMed DOI
Vondruskova E, et al. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J Biol Chem. 2005;280:2429–2438. doi: 10.1074/jbc.M405933200. PubMed DOI
Singha UK, et al. Characterization of the mitochondrial inner membrane protein translocator Tim17 from Trypanosoma brucei. Mol Biochem Parasitol. 2008;159:30–43. doi: 10.1016/j.molbiopara.2008.01.003. PubMed DOI PMC
Hannaert V, et al. Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. Eur J Biochem. 2003;270:3205–3213. doi: 10.1046/j.1432-1033.2003.03692.x. PubMed DOI
Raz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997;68:139–147. doi: 10.1016/S0001-706X(97)00079-X. PubMed DOI