• This record comes from PubMed

Identification of inhibitors regulating cell proliferation and FUS-DDIT3 expression in myxoid liposarcoma using combined DNA, mRNA, and protein analyses

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 29588491
PubMed Central PMC6070472
DOI 10.1038/s41374-018-0046-3
PII: S0023-6837(22)01028-5
Knihovny.cz E-resources

FUS-DDIT3 belongs to the FET (FUS, EWSR1, and TAF15) family of fusion oncogenes, which collectively are considered to be key players in tumor development. Even though over 90% of all myxoid liposarcomas (MLS) have a FUS-DDIT3 gene fusion, there is limited understanding of the signaling pathways that regulate its expression. In order to study cell proliferation and FUS-DDIT3 regulation at mRNA and protein levels, we first developed a direct cell lysis approach that allows DNA, mRNA, and protein to be analyzed in the same sample using quantitative PCR, reverse transcription quantitative qPCR and proximity ligation assay, respectively. We screened 70 well-characterized kinase inhibitors and determined their effects on cell proliferation and expression of FUS-DDIT3 and FUS at both mRNA and protein levels in the MLS 402-91 cell line, where twelve selected inhibitors were evaluated further in two additional MLS cell lines. Both FUS-DDIT3 and FUS mRNA expression correlated with cell proliferation and both transcripts were co-regulated in most conditions, indicating that the common 5' FUS promotor is important in transcriptional regulation. In contrast, FUS-DDIT3 and FUS protein levels displayed more cell line dependent expression. Furthermore, most JAK inhibitors caused FUS-DDIT3 downregulation at both mRNA and protein levels. In conclusion, defining factors that regulate FUS-DDIT3 expression opens new means to understand MLS development at the molecular level.

See more in PubMed

Ståhlberg A, Thomsen C, Ruff D, et al. Quantitative PCR analysis of DNA, RNAs, and proteins in the same single cell. Clin Chem. 2012;58:1682–91. doi: 10.1373/clinchem.2012.191445. PubMed DOI

Svec D, Andersson D, Pekny M, et al. Direct cell lysis for single-cell gene expression profiling. Front Oncol. 2013;3:274. doi: 10.3389/fonc.2013.00274. PubMed DOI PMC

Åman P. Fusion genes in solid tumors. Semin Cancer Biol. 1999;9:303–18. doi: 10.1006/scbi.1999.0130. PubMed DOI

Riggi N, Cironi L, Suva ML, et al. Sarcomas: genetics, signalling, and cellular origins. Part 1: the fellowship of TET. J Pathol. 2007;213:4–20. doi: 10.1002/path.2209. PubMed DOI

Rowley JD, Le Beau MM, Rabbitts TH, editors. Chromosomal translocations and genome rearrangements in cancer. 1st ed. New York, NY: Springer International Publishing Switzerland, 2015, 321–333.

Åman P. Fusion oncogenes in tumor development. Semin Cancer Biol. 2005;15:236–43. doi: 10.1016/j.semcancer.2005.01.009. PubMed DOI

Engstrom K, Willen H, Kabjorn-Gustafsson C, et al. The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol. 2006;168:1642–53. doi: 10.2353/ajpath.2006.050872. PubMed DOI PMC

Andersson MK, Ståhlberg A, Arvidsson Y, et al. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol. 2008;9:37. doi: 10.1186/1471-2121-9-37. PubMed DOI PMC

Jauhiainen A, Thomsen C, Strombom L, et al. Distinct cytoplasmic and nuclear functions of the stress induced protein DDIT3/CHOP/GADD153. PLoS One. 2012;7:e33208. doi: 10.1371/journal.pone.0033208. PubMed DOI PMC

Åman P, Dolatabadi S, Svec D, et al. Regulatory mechanisms, expression levels and proliferation effects of the FUS-DDIT3 fusion oncogene in liposarcoma. J Pathol. 2016;238:689–99. doi: 10.1002/path.4700. PubMed DOI

Thelin-Jarnum S, Goransson M, Burguete AS, et al. The myxoid liposarcoma specific TLS-CHOP fusion protein localizes to nuclear structures distinct from PML nuclear bodies. Int J Cancer. 2002;97:446–50. doi: 10.1002/ijc.1632. PubMed DOI

Ståhlberg A, Elbing K, Andrade-Garda JM, et al. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli. BMC Genom. 2008;9:170. doi: 10.1186/1471-2164-9-170. PubMed DOI PMC

Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI

Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Bengtsson M, Hemberg M, Rorsman P, et al. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Mol Biol. 2008;9:63. doi: 10.1186/1471-2199-9-63. PubMed DOI PMC

Ståhlberg A, Bengtsson M, Hemberg M, et al. Quantitative transcription factor analysis of undifferentiated single human embryonic stem cells. Clin Chem. 2009;55:2162–70. doi: 10.1373/clinchem.2009.131433. PubMed DOI

Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol. 2002;20:473–7. doi: 10.1038/nbt0502-473. PubMed DOI

Loven J, Orlando DA, Sigova AA, et al. Revisiting global gene expression analysis. Cell. 2012;151:476–82. doi: 10.1016/j.cell.2012.10.012. PubMed DOI PMC

Lin CY, Loven J, Rahl PB, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151:56–67. doi: 10.1016/j.cell.2012.08.026. PubMed DOI PMC

Dolatabadi S, Candia J, Akrap N, et al. Cell cycle and cell size dependent gene expression reveals distinct subpopulations at single-cell level. Front Genet. 2017;8:1. doi: 10.3389/fgene.2017.00001. PubMed DOI PMC

Karlsson J, Kroneis T, Jonasson E, et al. Transcriptomic characterization of the human cell cycle in individual unsynchronized cells. J Mol Biol. 2017;429:3909–24. doi: 10.1016/j.jmb.2017.10.011. PubMed DOI

Ståhlberg A, Kåbjörn Gustafsson C, Engtröm K, et al. Normal and functional TP53 in genetically stable myxoid/round cell liposarcoma. PLoS One. 2014;9:e113110. doi: 10.1371/journal.pone.0113110. PubMed DOI PMC

Riggi N, Cironi L, Provero P, et al. Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res. 2006;66:7016–23. doi: 10.1158/0008-5472.CAN-05-3979. PubMed DOI

Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7. doi: 10.1038/nature05268. PubMed DOI

Oikawa K, Tanaka M, Itoh S, et al. A novel oncogenic pathway by TLS-CHOP involving repression of MDA-7/IL-24 expression. Br J Cancer. 2012;106:1976–9. doi: 10.1038/bjc.2012.199. PubMed DOI PMC

Kerr LT, Donoghue JF, Wilding AL, et al. Axitinib has antiangiogenic and antitumorigenic activity in myxoid liposarcoma. Sarcoma. 2016;2016:3484673–17. doi: 10.1155/2016/3484673. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...