The Impact of Five VDR Polymorphisms on Multiple Sclerosis Risk and Progression: a Case-Control and Genotype-Phenotype Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
1549/2014
Ministerstvo Školství, Mládeže a Tělovýchovy
1426/2015
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
29589202
DOI
10.1007/s12031-018-1034-1
PII: 10.1007/s12031-018-1034-1
Knihovny.cz E-zdroje
- Klíčová slova
- EDSS, MSSS, Multiple sclerosis, Single-nucleotide polymorphism, Vitamin D receptor,
- MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- receptory kalcitriolu genetika MeSH
- roztroušená skleróza genetika patologie MeSH
- senioři MeSH
- sexuální faktory MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- receptory kalcitriolu MeSH
- VDR protein, human MeSH Prohlížeč
Vitamin D receptor polymorphisms have been the target of many studies focusing on multiple sclerosis. However, previously reported results have been inconclusive. The objective of this study was to investigate the association between five vitamin D receptor polymorphisms (EcoRV, FokI, ApaI, TaqI, and BsmI) and multiple sclerosis susceptibility and its course. The study was carried out as a case-control and genotype-phenotype study, consisted of 296 Czech multiple sclerosis patients and 135 healthy controls. Genotyping was carried out using polymerase chain reaction and restriction analysis. In multiple sclerosis men, allele and/or genotype distributions differed in EcoRV, TaqI, BsmI, and ApaI polymorphisms as compared to controls (EcoRV, pa = 0.02; Taq, pg = 0.02, pa = 0.02; BsmI, pg = 0.02, pa = 0.04; ApaI, pg = 0.008, pa = 0.005). In multiple sclerosis women, differences in the frequency of alleles and genotypes were found to be significant in ApaI (controls vs multiple sclerosis women: pg = 0.01, pa = 0.05). Conclusive results were observed between multiple sclerosis women in the case of EcoRV [differences in Expanded Disability Status Scale (p = 0.05); CT genotype was found to increase the risk of primary progressive multiple sclerosis 5.5 times (CT vs CC+TT pcorr = 0.01, sensitivity 0.833, specificity 0.525, power test 0.823)] and FokI [borderline difference in Multiple Sclerosis Severity Score (p = 0.05)]. Our results indicate that the distribution of investigated vitamin D receptor polymorphisms is a risk factor for multiple sclerosis susceptibility and progression in the Czech population. The association between disease risk and polymorphisms was found to be stronger in men. The association of disease progression with polymorphisms was observed only in women.
Zobrazit více v PubMed
Neurol Res. 2016 Aug;38(8):678-84 PubMed
J Neuroimmunol. 2013 Feb 15;255(1-2):92-6 PubMed
Ann Neurol. 2001 Oct;50(4):434-42 PubMed
Neurology. 2004 Jun 22;62(12):2323-5 PubMed
J Clin Immunol. 2006 Jul;26(4):299-307 PubMed
Neurologist. 2007 Mar;13(2):45-56 PubMed
Nature. 2011 Aug 10;476(7359):214-9 PubMed
Mult Scler. 2010 Feb;16(2):133-8 PubMed
Int J Immunogenet. 2015 Jun;42(3):174-81 PubMed
Neurol Sci. 2016 Feb;37(2):261-7 PubMed
J Negat Results Biomed. 2011 May 05;10:3 PubMed
Lancet. 2008 Oct 25;372(9648):1502-17 PubMed
J Neurogenet. 2005 Jan-Mar;19(1):25-38 PubMed
Med Sci Monit. 2005 May;11(5):RA155-162 PubMed
Ann Neurol. 2001 Jul;50(1):121-7 PubMed
Neurology. 2005 Apr 12;64(7):1144-51 PubMed
Autoimmun Rev. 2015 May;14(5):363-9 PubMed
J Neuroimmunol. 2008 Dec 15;205(1-2):105-9 PubMed
Scand J Immunol. 2011 Jul;74(1):1-13 PubMed
Clin Rev Allergy Immunol. 2013 Oct;45(2):217-26 PubMed
J Mol Neurosci. 2015 Jul;56(3):572-6 PubMed
J Neurol Sci. 2000 Aug 1;177(1):65-71 PubMed
Ann N Y Acad Sci. 2009 Sep;1173:515-20 PubMed
Lancet. 2002 Apr 6;359(9313):1221-31 PubMed
J Neurol Sci. 2012 Feb 15;313(1-2):79-85 PubMed
Neurol Res. 2015 Apr;37(4):301-8 PubMed
PLoS One. 2013 Jun 20;8(6):e65487 PubMed
J Neurol Sci. 2011 Apr 15;303(1-2):31-4 PubMed
PLoS One. 2015 Nov 05;10(11):e0142265 PubMed
Autoimmun Rev. 2010 Mar;9(5):A387-94 PubMed
Mult Scler. 2008 Nov;14(9):1280-3 PubMed
Brain. 2001 Nov;124(Pt 11):2203-14 PubMed
Autoimmun Rev. 2012 Dec;12(2):127-36 PubMed
Lancet Neurol. 2010 Jun;9(6):599-612 PubMed
J Neurol Sci. 2016 Aug 15;367 :148-51 PubMed
Mult Scler. 2012 Jan;18(1):16-22 PubMed
J Neuroimmunol. 2009 Feb 15;207(1-2):117-21 PubMed
Brain Behav Immun. 2011 Oct;25(7):1460-7 PubMed
Nat Genet. 2013 Nov;45(11):1353-60 PubMed
Autoimmun Rev. 2012 Jan;11(3):163-6 PubMed
Mult Scler. 2009 May;15(5):563-70 PubMed
Cell Mol Immunol. 2015 Mar;12(2):243-52 PubMed
Neurology. 1983 Nov;33(11):1444-52 PubMed
J Neuroimmunol. 2016 Apr 15;293:59-64 PubMed
Brain. 1998 Dec;121 ( Pt 12):2327-34 PubMed
Neurology. 2017 Oct 10;89(15):1578-1583 PubMed
Neurogenetics. 2012 May;13(2):181-7 PubMed
Biomed Res Int. 2015;2015:427519 PubMed
Int J Biochem Cell Biol. 2003 Jun;35(6):881-900 PubMed
Ann Neurol. 2007 Apr;61(4):288-99 PubMed
Neurol Genet. 2016 Sep 13;2(5):e97 PubMed
J Neurol Sci. 1999 Jun 15;166(1):47-52 PubMed
J Neurol. 2003 Oct;250(10):1224-8 PubMed