• This record comes from PubMed

Remnants of an Ancient Deltaretrovirus in the Genomes of Horseshoe Bats (Rhinolophidae)

. 2018 Apr 10 ; 10 (4) : . [epub] 20180410

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
MC_UU_12014/10 Medical Research Council - United Kingdom
MC_UU_12014/12 Medical Research Council - United Kingdom
U54 GM103297 NIGMS NIH HHS - United States

Endogenous retrovirus (ERV) sequences provide a rich source of information about the long-term interactions between retroviruses and their hosts. However, most ERVs are derived from a subset of retrovirus groups, while ERVs derived from certain other groups remain extremely rare. In particular, only a single ERV sequence has been identified that shows evidence of being related to an ancient Deltaretrovirus, despite the large number of vertebrate genome sequences now available. In this report, we identify a second example of an ERV sequence putatively derived from a past deltaretroviral infection, in the genomes of several species of horseshoe bats (Rhinolophidae). This sequence represents a fragment of viral genome derived from a single integration. The time of the integration was estimated to be 11-19 million years ago. This finding, together with the previously identified endogenous Deltaretrovirus in long-fingered bats (Miniopteridae), suggest a close association of bats with ancient deltaretroviruses.

See more in PubMed

Johnson W.E. Endogenous Retroviruses in the Genomics Era. Annu. Rev. Virol. 2015;2:135–159. doi: 10.1146/annurev-virology-100114-054945. PubMed DOI

Greenwood A.D., Ishida Y., O’Brien S.P., Roca A.L., Eiden M.V. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol. Mol. Biol. Rev. 2018;82 doi: 10.1128/MMBR.00044-17. PubMed DOI PMC

Farkašová H., Hron T., Pačes J., Hulva P., Benda P., Gifford R.J., Elleder D. Discovery of an endogenous Deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae) Proc. Natl. Acad. Sci. USA. 2017;114:3145–3150. doi: 10.1073/pnas.1621224114. PubMed DOI PMC

Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008;36:W5–W9. doi: 10.1093/nar/gkn201. PubMed DOI PMC

Serrao E., Ballandras-Colas A., Cherepanov P., Maertens G.N., Engelman A.N. Key determinants of target DNA recognition by retroviral intasomes. Retrovirology. 2015;12:39. doi: 10.1186/s12977-015-0167-3. PubMed DOI PMC

Bao W., Kojima K.K., Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA. 2015;6:11. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC

Belshaw R., Watson J., Katzourakis A., Howe A., Woolven-Allen J., Burt A., Tristem M. Rate of recombinational deletion among human endogenous retroviruses. J. Virol. 2007;81:9437–9442. doi: 10.1128/JVI.02216-06. PubMed DOI PMC

Benachenhou F., Blikstad V., Blomberg J. The phylogeny of orthoretroviral long terminal repeats (LTRs) Gene. 2009;448:134–138. doi: 10.1016/j.gene.2009.07.002. PubMed DOI

Kypr J., Mrázek J., Reich J. Nucleotide composition bias and CpG dinucleotide content in the genomes of HIV and HTLV 1/2. Biochim. Biophys. Acta. 1989;1009:280–282. doi: 10.1016/0167-4781(89)90114-0. PubMed DOI

Johnson W.E., Coffin J.M. Constructing primate phylogenies from ancient retrovirus sequences. Proc. Natl. Acad. Sci. USA. 1999;96:10254–10260. doi: 10.1073/pnas.96.18.10254. PubMed DOI PMC

Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y. Complete nucleotide sequence of the genome of Bovine leukemia virus: Its evolutionary relationship to other retroviruses. Proc. Natl. Acad. Sci. USA. 1985;82:677–681. doi: 10.1073/pnas.82.3.677. PubMed DOI PMC

Dool S.E., Puechmaille S.J., Foley N.M., Allegrini B., Bastian A., Mutumi G.L., Maluleke T.G., Odendaal L.J., Teeling E.C., Jacobs D.S. Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from Horseshoe bats (Rhinolophidae: Chiroptera) Mol. Phylogenet. Evol. 2016;97:196–212. doi: 10.1016/j.ympev.2016.01.003. PubMed DOI

Stoffberg S., Jacobs D.S., Mackie I.J., Matthee C.A. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Mol. Phylogenet. Evol. 2010;54:1–9. doi: 10.1016/j.ympev.2009.09.021. PubMed DOI

Soisook P., Struebig M.J., Noerfahmy S., Bernard H., Maryanto I., Chen S.-F., Rossiter S.J., Kuo H.-C., Deshpande K., Bates P.J.J., et al. Description of a New Species of the Rhinolophus trifoliatus-Group (Chiroptera: Rhinolophidae) from Southeast Asia. Acta Chiropterol. 2015;17:21–36. doi: 10.3161/15081109ACC2015.17.1.002. DOI

Soisook P., Bumrungsri S., Satasook C., Thong V.D., Bu S.S.H., Harrison D.L., Bates P.J.J. A taxonomic review of Rhinolophus stheno and R. malayanus (Chiroptera: Rhinolophidae) from continental Southeast Asia: An evaluation of echolocation call frequency in discriminating between cryptic species. Acta Chiropterol. 2008;10:221–242. doi: 10.3161/150811008X414818. DOI

Volleth M., Loidl J., Mayer F., Yong H.-S., Müller S., Heller K.-G. Surprising Genetic Diversity in Rhinolophus luctus (Chiroptera: Rhinolophidae) from Peninsular Malaysia: Description of a New Species Based on Genetic and Morphological Characters. Acta Chiropterol. 2015;17:1–20. doi: 10.3161/15081109ACC2015.17.1.001. DOI

Camin J.H., Sokal R.R. A Method for Deducing Branching Sequences in Phylogeny. Evolution. 1965;19:311. doi: 10.1111/j.1558-5646.1965.tb01722.x. DOI

Madsen O., Scally M., Douady C.J., Kao D.J., DeBry R.W., Adkins R., Amrine H.M., Stanhope M.J., de Jong W.W., Springer M.S. Parallel adaptive radiations in two major clades of placental mammals. Nature. 2001;409:610–614. doi: 10.1038/35054544. PubMed DOI

Nishihara H., Hasegawa M., Okada N. Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc. Natl. Acad. Sci. USA. 2006;103:9929–9934. doi: 10.1073/pnas.0603797103. PubMed DOI PMC

Simmons N.B. Evolution. An Eocene big bang for bats. Science. 2005;307:527–528. doi: 10.1126/science.1108871. PubMed DOI

Hayman D.T.S. Bats as Viral Reservoirs. Ann. Rev. Virol. 2016;3:77–99. doi: 10.1146/annurev-virology-110615-042203. PubMed DOI

Omatsu T., Watanabe S., Akashi H., Yoshikawa Y. Biological characters of bats in relation to natural reservoir of emerging viruses. Comp. Immunol. Microbiol. Infect. Dis. 2007;30:357–374. doi: 10.1016/j.cimid.2007.05.006. PubMed DOI PMC

Zhou P., Tachedjian M., Wynne J.W., Boyd V., Cui J., Smith I., Cowled C., Ng J.H.J., Mok L., Michalski W.P., et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc. Natl. Acad. Sci. USA. 2016;113:2696–2701. doi: 10.1073/pnas.1518240113. PubMed DOI PMC

Teeling E.C., Vernes S.C., Dávalos L.M., Ray D.A., Gilbert M.T.P., Myers E. Bat1K Consortium Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annu. Rev. Anim. Biosci. 2018;6:23–46. doi: 10.1146/annurev-animal-022516-022811. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...