Remnants of an Ancient Deltaretrovirus in the Genomes of Horseshoe Bats (Rhinolophidae)
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
MC_UU_12014/10
Medical Research Council - United Kingdom
MC_UU_12014/12
Medical Research Council - United Kingdom
U54 GM103297
NIGMS NIH HHS - United States
PubMed
29642581
PubMed Central
PMC5923479
DOI
10.3390/v10040185
PII: v10040185
Knihovny.cz E-resources
- Keywords
- Deltaretrovirus, bats, endogenous retrovirus, evolution, genomics, retrovirus,
- MeSH
- Chiroptera classification virology MeSH
- Deltaretrovirus classification genetics MeSH
- Endogenous Retroviruses classification genetics MeSH
- Phylogeny MeSH
- Genome genetics MeSH
- Genomics MeSH
- Terminal Repeat Sequences genetics MeSH
- Evolution, Molecular MeSH
- Recombination, Genetic MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Endogenous retrovirus (ERV) sequences provide a rich source of information about the long-term interactions between retroviruses and their hosts. However, most ERVs are derived from a subset of retrovirus groups, while ERVs derived from certain other groups remain extremely rare. In particular, only a single ERV sequence has been identified that shows evidence of being related to an ancient Deltaretrovirus, despite the large number of vertebrate genome sequences now available. In this report, we identify a second example of an ERV sequence putatively derived from a past deltaretroviral infection, in the genomes of several species of horseshoe bats (Rhinolophidae). This sequence represents a fragment of viral genome derived from a single integration. The time of the integration was estimated to be 11-19 million years ago. This finding, together with the previously identified endogenous Deltaretrovirus in long-fingered bats (Miniopteridae), suggest a close association of bats with ancient deltaretroviruses.
Department of Biology and Ecology University of Ostrava Chitussiho 10 71000 Ostrava Czech Republic
Department of Zoology Charles University Vinicna 7 12844 Prague Czech Republic
Department of Zoology Hungarian Natural History Musem Baross Utca 13 1088 Budapest Hungary
Department of Zoology National Museum Vaclavske nam 68 11579 Prague Czech Republic
MRC University of Glasgow Centre for Virus Research 464 Bearsden Road Glasgow G12 8TA UK
See more in PubMed
Johnson W.E. Endogenous Retroviruses in the Genomics Era. Annu. Rev. Virol. 2015;2:135–159. doi: 10.1146/annurev-virology-100114-054945. PubMed DOI
Greenwood A.D., Ishida Y., O’Brien S.P., Roca A.L., Eiden M.V. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol. Mol. Biol. Rev. 2018;82 doi: 10.1128/MMBR.00044-17. PubMed DOI PMC
Farkašová H., Hron T., Pačes J., Hulva P., Benda P., Gifford R.J., Elleder D. Discovery of an endogenous Deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae) Proc. Natl. Acad. Sci. USA. 2017;114:3145–3150. doi: 10.1073/pnas.1621224114. PubMed DOI PMC
Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008;36:W5–W9. doi: 10.1093/nar/gkn201. PubMed DOI PMC
Serrao E., Ballandras-Colas A., Cherepanov P., Maertens G.N., Engelman A.N. Key determinants of target DNA recognition by retroviral intasomes. Retrovirology. 2015;12:39. doi: 10.1186/s12977-015-0167-3. PubMed DOI PMC
Bao W., Kojima K.K., Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA. 2015;6:11. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC
Belshaw R., Watson J., Katzourakis A., Howe A., Woolven-Allen J., Burt A., Tristem M. Rate of recombinational deletion among human endogenous retroviruses. J. Virol. 2007;81:9437–9442. doi: 10.1128/JVI.02216-06. PubMed DOI PMC
Benachenhou F., Blikstad V., Blomberg J. The phylogeny of orthoretroviral long terminal repeats (LTRs) Gene. 2009;448:134–138. doi: 10.1016/j.gene.2009.07.002. PubMed DOI
Kypr J., Mrázek J., Reich J. Nucleotide composition bias and CpG dinucleotide content in the genomes of HIV and HTLV 1/2. Biochim. Biophys. Acta. 1989;1009:280–282. doi: 10.1016/0167-4781(89)90114-0. PubMed DOI
Johnson W.E., Coffin J.M. Constructing primate phylogenies from ancient retrovirus sequences. Proc. Natl. Acad. Sci. USA. 1999;96:10254–10260. doi: 10.1073/pnas.96.18.10254. PubMed DOI PMC
Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y. Complete nucleotide sequence of the genome of Bovine leukemia virus: Its evolutionary relationship to other retroviruses. Proc. Natl. Acad. Sci. USA. 1985;82:677–681. doi: 10.1073/pnas.82.3.677. PubMed DOI PMC
Dool S.E., Puechmaille S.J., Foley N.M., Allegrini B., Bastian A., Mutumi G.L., Maluleke T.G., Odendaal L.J., Teeling E.C., Jacobs D.S. Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from Horseshoe bats (Rhinolophidae: Chiroptera) Mol. Phylogenet. Evol. 2016;97:196–212. doi: 10.1016/j.ympev.2016.01.003. PubMed DOI
Stoffberg S., Jacobs D.S., Mackie I.J., Matthee C.A. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Mol. Phylogenet. Evol. 2010;54:1–9. doi: 10.1016/j.ympev.2009.09.021. PubMed DOI
Soisook P., Struebig M.J., Noerfahmy S., Bernard H., Maryanto I., Chen S.-F., Rossiter S.J., Kuo H.-C., Deshpande K., Bates P.J.J., et al. Description of a New Species of the Rhinolophus trifoliatus-Group (Chiroptera: Rhinolophidae) from Southeast Asia. Acta Chiropterol. 2015;17:21–36. doi: 10.3161/15081109ACC2015.17.1.002. DOI
Soisook P., Bumrungsri S., Satasook C., Thong V.D., Bu S.S.H., Harrison D.L., Bates P.J.J. A taxonomic review of Rhinolophus stheno and R. malayanus (Chiroptera: Rhinolophidae) from continental Southeast Asia: An evaluation of echolocation call frequency in discriminating between cryptic species. Acta Chiropterol. 2008;10:221–242. doi: 10.3161/150811008X414818. DOI
Volleth M., Loidl J., Mayer F., Yong H.-S., Müller S., Heller K.-G. Surprising Genetic Diversity in Rhinolophus luctus (Chiroptera: Rhinolophidae) from Peninsular Malaysia: Description of a New Species Based on Genetic and Morphological Characters. Acta Chiropterol. 2015;17:1–20. doi: 10.3161/15081109ACC2015.17.1.001. DOI
Camin J.H., Sokal R.R. A Method for Deducing Branching Sequences in Phylogeny. Evolution. 1965;19:311. doi: 10.1111/j.1558-5646.1965.tb01722.x. DOI
Madsen O., Scally M., Douady C.J., Kao D.J., DeBry R.W., Adkins R., Amrine H.M., Stanhope M.J., de Jong W.W., Springer M.S. Parallel adaptive radiations in two major clades of placental mammals. Nature. 2001;409:610–614. doi: 10.1038/35054544. PubMed DOI
Nishihara H., Hasegawa M., Okada N. Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc. Natl. Acad. Sci. USA. 2006;103:9929–9934. doi: 10.1073/pnas.0603797103. PubMed DOI PMC
Simmons N.B. Evolution. An Eocene big bang for bats. Science. 2005;307:527–528. doi: 10.1126/science.1108871. PubMed DOI
Hayman D.T.S. Bats as Viral Reservoirs. Ann. Rev. Virol. 2016;3:77–99. doi: 10.1146/annurev-virology-110615-042203. PubMed DOI
Omatsu T., Watanabe S., Akashi H., Yoshikawa Y. Biological characters of bats in relation to natural reservoir of emerging viruses. Comp. Immunol. Microbiol. Infect. Dis. 2007;30:357–374. doi: 10.1016/j.cimid.2007.05.006. PubMed DOI PMC
Zhou P., Tachedjian M., Wynne J.W., Boyd V., Cui J., Smith I., Cowled C., Ng J.H.J., Mok L., Michalski W.P., et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc. Natl. Acad. Sci. USA. 2016;113:2696–2701. doi: 10.1073/pnas.1518240113. PubMed DOI PMC
Teeling E.C., Vernes S.C., Dávalos L.M., Ray D.A., Gilbert M.T.P., Myers E. Bat1K Consortium Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annu. Rev. Anim. Biosci. 2018;6:23–46. doi: 10.1146/annurev-animal-022516-022811. PubMed DOI