Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
29755972
PubMed Central
PMC5934431
DOI
10.3389/fchem.2018.00141
Knihovny.cz E-resources
- Keywords
- biorefinery, depolymerization, greener oxidation, life cycle analysis, lignocellulosic biomass, mild pretreatment,
- Publication type
- Journal Article MeSH
- Review MeSH
Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the problems associated with the conventional processes. The mechanisms of reaction pathways, selectivity and efficiency of end-products obtained using greener processes such as ozonolysis, photocatalysis, oxidative catalysis, electrochemical oxidation, and Fenton or Fenton-like reactions, as applied to depolymerization of lignocellulosic biomass are summarized with deliberation on future prospects of biorefineries with greener pretreatment processes in the context of the life cycle assessment.
See more in PubMed
Abdelaziz O., Brink D. P., Prothmann J., Ravi K., Sun M., Garcia-Hidalgo J., et al. . (2016). Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346. 10.1016/j.biotechadv.2016.10.001 PubMed DOI
Agarwal B., Kailasam K., Sangwan R. S., Elumalai S. (2017). Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: a review. Renew. Sust. Energ. Rev. 82, 2408–2425. 10.1016/j.rser.2017.08.088 DOI
Albert J. (2017). Selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose using tailor-made polyoxometalate catalysts. Faraday Discuss. 202, 99–109. 10.1039/C7FD00047B PubMed DOI
Al jibouri A. K. H., Turcotte G., Wu J., Cheng C. H. (2015). Ozone pretreatment of humid wheat straw for biofuel production. Energ. Sci. Eng. 3, 541–548. 10.1002/ese3.93 DOI
Alonso D. M., Bond J. Q., Serrano-Ruiz J. C., Dumesic J. A. (2010). Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes. Green Chem. 12, 992–999. 10.1039/c001899f DOI
Alvira P., Tomás-Pejó E., Ballesteros M., Negro M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861. 10.1016/j.biortech.2009.11.093 PubMed DOI
Amirta R., Tanabe T., Watanabe T., Honda Y., Kuwahara M., Watanabe T. (2006). Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J. Biotechnol. 123, 71–77. 10.1016/j.jbiotec.2005.10.004 PubMed DOI
Badshah M., Lam D. M., Liu J., Mattiasson B. (2012). Use of an automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments. Bioresour. Technol. 114, 262–269. 10.1016/j.biortech.2012.02.022 PubMed DOI
Bairamzadeh S., Saidi-Mehrabad M., Pishvaee M. S. (2018). Modelling different types of uncertainty in biofuel supply network design and planning: a robust optimization approach. Renew. Energ. 116, 500–517. 10.1016/j.renene.2017.09.020 DOI
Barhoumi N., Oturan N., Olvera-Vargas H., Brillas E., Gadri A., Ammar S., et al. (2016). Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. kinetics, mechanism and toxicity assessment. Water Res. 94, 52–61. 10.1016/j.watres.2016.02.042 PubMed DOI
Barrerra-Martinez I., Guzman N., Pena E., Vazquez T., Caron-Camacho R., Folch J., et al. (2016). Ozonolysis of alkaline lignin and sugarcane bagasse: structural changes and their effect on saccharaification. Biomass Bioenerg. 94, 167–172. 10.1016/j.biombioe.2016.08.010 DOI
Bertleff B., Claußnitzer J., Korth W., Wasserscheid P., Jess A., Albert J. (2017). Extraction coupled oxidative desulfurization of fuels to sulfate and water-soluble sulfur compounds using polyoxometalate catalysts and molecular oxygen. ACS Sustain. Chem. Eng. 5, 4110–4118. 10.1021/acssuschemeng.7b00087 DOI
Borrion A. L., McManus M. C., Hammond G. P. (2012). Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renew. Sustain. Energ. Rev. 16, 4638–4650. 10.1016/j.rser.2012.04.016 DOI
Brebu M., Vasile C. (2010). Thermal degradation of lignin-a review. Cell. Chem. Technol. 44, 353–363.
Bu Q., Lei H., Wang L., Wei Y., Zhu L., Zhang X., et al. . (2014). Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons. Bioresour. Technol. 162, 142–147. 10.1016/j.biortech.2014.03.103 PubMed DOI
Bundhoo Z. M. A. (2018). Microwave-assisted conversion of biomass and waste materials to biofuels. Renew. Sust. Energ. Rev. 82, 1149–1177. 10.1016/j.rser.2017.09.066 PubMed DOI
Cavka A., Wallenius A., Alriksson B., Nilvebrant N.-O., Jönsson L. J. (2015). Ozone detoxification of steam-pretreated Norway spruce. Biotechnol. Biofuels 8, 196–206. 10.1186/s13068-015-0388-7 PubMed DOI PMC
Cesaro A., Belgiorno V. (2013). Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrason. Sonochem. 20, 931–936. 10.1016/j.ultsonch.2012.10.017 PubMed DOI
Chang C. N., Ma Y. S., Fang G.-C., Chao A. C., Tsai M.-C., Sung H.-F. (2004). Decolorizing of lignin wastewater using the photochemical UV/TiO2 process. Chemosphere 56, 1011–1017. 10.1016/j.chemosphere.2004.04.021 PubMed DOI
Cheng F., Wang H., Rogers R. D. (2014). Oxygen enhances polyoxometalate-based catalytic dissolution and delignification of woody biomass in ionic liquids. ACS Sustain. Chem. Eng. 2, 2859–2865. 10.1021/sc500614m DOI
Chheda J. N., Huber G. W., Dumesic J. A. (2007). Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183. 10.1002/anie.200604274 PubMed DOI
Choong F. X., Bäck M., Steiner S. E., Melican K., Nilsson N. P. R., Edlund U., et al. . (2017). Nondestructive, real-time, determination and visualization of cellulose, hemicellulose and lignin by luminescent oligothiophenes. Sci. Rep. 6:35578. 10.1038/srep35578 PubMed DOI PMC
Chum H. L., Sopher D. W., Schroeder H. A. (1985). Electrochemistry of lignin materials and derived compounds, in Fundamentals of Thermochemical Biomass Conversion, eds Overend R. P., Milne T. A., Mudge L. K. (Dordrecht: Springer Netherlands; ), 1103–1113.
Clark J. M., Deswarte F. E. I., Farmer T. J. (2009). The integration of green chemistry into future biorefineries. Biofuels Bioprod. Biorefin 3, 72–90. 10.1002/bbb.119 DOI
Colmenares J. C., Varma R. S., Nair V. (2017). Exploring strategies for selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem. Soc. Rev. 46, 6675–6686. 10.1039/C7CS00257B PubMed DOI
Crestini C., Crucianeli M., Orlandi M., Saladino R. (2010). Oxidative strategies in lignin chemistry: a new environmental friendly approach for the functionalization of lignin and lignocellulosic fibers. Cataly. Today 156, 8–22. 10.1016/j.cattod.2010.03.057 DOI
de Almeida M. N., Falkoski D. L., Guimarães V. M., Ramos H. J. D. O., Visser E. M., Maitan-Alfenas G. P., et al. . (2013). Characteristics of free endoglucanase and glycosidases multienzyme complex from Fusarium verticillioides. Bioresour. Technol. 143, 413–422. 10.1016/j.biortech.2013.06.021 PubMed DOI
De Bhowmick G., Sarmah A. K., Sen R. (2017). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour. Technol. 247, 1144–1154. 10.1016/j.biortech.2017.09.163 PubMed DOI
De Gregorio G. F., Prado R., Vriamont C., Erdocia X., Labidi J., Hallett J. P., et al. (2016). Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustain. Chem. Eng. 4, 6031–6036. 10.1021/acssuschemeng.6b01339 DOI
Diagne M., Sharma V. K., Oturan N., Oturan M. A. (2014). Depollution of indigo dye by anodic oxidation and electro-Fenton using B-doped diamond anode. Environ. Chem. Lett. 12, 219–224. 10.1007/s10311-013-0437-z DOI
Dick G. R., Frankhouser A. D., Banerjee A., Kanan M. W. (2017). A scalable carboxylation route to furan-2,5-dicarboxylic acid. Green Chem. 19, 2966–2972. 10.1039/C7GC01059A DOI
Di Marino D., Stockmann D., Kriescher S., Stiefel S., Wessling M. (2016). Electrochemical depolymerisation of lignin in a deep eutectic solvent. Green Chem. 18, 6021–6028. 10.1039/C6GC01353H DOI
Diamantopoulou L., Papadaki S., Karaoglanoglou L. (2016). The new era of European biofuels landscape: comparative assessment of socio-environmental sustainability of lignocellulosic feedstocks. Cell. Chem. Technol. 50, 507–519. 10.1016/j.envdev.2015.03.006 DOI
Dier T. K. F., Rauber D., Durneata D., Hempelmann R., Volmer D. A. (2017). Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Sci. Rep. 7:5041. 10.1038/s41598-017-05316-x PubMed DOI PMC
Elizabeth T. A., Julius K. O., Ekaette N. D., Sudipta S. B., Das S., Barooah M. (2016). Influence of different substrates on lignolytic enzyme production in improved strains of wood ear mushroom (Auricularia species). J. Sci. Ind. Res. 75, 740–746. Available online at: http://nopr.niscair.res.in/handle/123456789/38166
Farag S., Fu D., Jessop P. G., Chaouki J. (2014). Detailed compositional analysis and structural investigation of a bio-oil from microwave pyrolysis of kraft lignin. J. Anal. Appl. Pyrolysis 109, 249–257. 10.1016/j.jaap.2014.06.005 DOI
Feng L., Chen Z. I. (2008). Research progress on dissolution and functional modification of cellulose in ionic liquids. J. Mol. Liq. 142, 1–5. 10.1016/j.molliq.2008.06.007 DOI
Feng M., Wang Z., Dionysiou D. D., Sharma V. K. (2017). Metal-mediated oxidation of fluoroquinolone antibiotics in water: a review on kinetics, transformation products, and toxicity assessment. J. Hazard. Mater. 344, 1136–1154. 10.1016/j.jhazmat.2017.08.067 PubMed DOI
Field C. B., Campbell J. E., Lobell D. B. (2008). Biomass energy: the scale of the potential resource. Trends Ecol. Evol. 23, 65–72. 10.1016/j.tree.2007.12.001 PubMed DOI
Fromm J., Rockel B., Lautner S., Windeisen E., Wanner G. (2003). Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J. Struct. Biol. 143, 77–84. 10.1016/S1047-8477(03)00119-9 PubMed DOI
Frontana-Uribe B. A., Little R. D., Ibanez J. G., Palma A., Vasquez-Medrano R. (2010). Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem. 12, 2099–2119. 10.1039/c0gc00382d DOI
Fu D., Farag S., Chaouki J., Jessop P. G. (2014). Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent. Bioresour. Technol. 154, 101–108. 10.1016/j.biortech.2013.11.091 PubMed DOI
Gabhane J., Prince William S. P. M., Vaidya A. N., Das S., Wate S. R. (2015). Solar assisted alkali pretreatment of garden biomass: effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose. Waste Manag. 40, 92–99. 10.1016/j.wasman.2015.03.002 PubMed DOI
Ganzenko O., Trellu C., Papirio S., Oturan N., Huguenot D., van Hullebusch E. D., et al. . (2017). Bioelectro-Fenton: evaluation of a combined biological—advanced oxidation treatment for pharmaceutical wastewater. Environ. Sci. Pollut. Res. [Epub ahead of print]. 10.1007/s11356-017-8450-6 PubMed DOI
Gao J., Chen L., Yan Z., Wang L. (2013). Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresour. Technol. 132, 361–364. 10.1016/j.biortech.2012.10.136 PubMed DOI
Garcia-Cubero M., Gonzalez-Benito G., Indacoechea I., Coca M., Bolado S. (2016). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour. Technol. 100, 1608–1613. 10.1016/j.biortech.2008.09.012 PubMed DOI
Gazi S., Ng W. K. H., Ganguly R., Moeljadi A. M. P., Hirao H., Soo H. S. (2015). Selective photocatalystic C-C bond cleavage under ambient a conditions with earth abundant vanadium complexes. Chem. Sci. 6, 7130–7142. 10.1039/C5SC02923F PubMed DOI PMC
Gerbrandt K., Chu P. L., Simmonds A., Mullins K. A., MacLean H. L., Griffin W. M., et al. . (2016). Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Curr. Opin. Biotechnol. 38, 63–70. 10.1016/j.copbio.2015.12.021 PubMed DOI
Gnansounou E., Dauriat A., Villegas J., Panichelli L. (2009). Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour. Technol. 100, 4919–4930. 10.1016/j.biortech.2009.05.067 PubMed DOI
Gong J., Imbault A., Farnood R. (2017). The promoting role of bismuth for the enhanced photocatalytic oxidation of lignin on Pt-TiO2 under solar light illumination. Appl. Cataly. B 204, 296–303. 10.1016/j.apcatb.2016.11.045 DOI
Haddad M., Bazinet L., Savadogo O., Paris J. (2017). A feasibility study of a novel electro-membrane based process to acidify Kraft black liquor and extract lignin. Proc. Safety Env. Protec. 106, 68–75. 10.1016/j.psep.2016.10.003 DOI
Hasunuma T., Kondo A. (2012). Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem. 47, 1287–1294. 10.1016/j.procbio.2012.05.004 DOI
He L., Huang H., Zhang Z., Lei Z. (2016). A Review of hydrothermal pretreatment of lignocellulosic biomass for enhanced biogas production. Curr. Org. Chem. 19, 437–446. 10.2174/1385272819666150119223454 DOI
Heinze T., Schwikal K., Barthel S. (2005). Ionic liquids as reaction medium in cellulose functionalization. Macromol. Biosci. 5, 520–525. 10.1002/mabi.200500039 PubMed DOI
Hendriks A. T. W. M., Zeeman G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18. 10.1016/j.biortech.2008.05.027 PubMed DOI
Huber G. W., Iborra S., Corma A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098. 10.1021/cr068360d PubMed DOI
Jain B., Singh A. K., Sharma V. K. (2017). Degradation of naphthylazo anionic dye by fenton and fenton-like processes: a comparative study with fast sulphon black-F. Desalin. Water Treat. 62, 252–256. 10.5004/dwt.2017.1455 DOI
Jung Y. H., Kim H. L., Park H. M., Park Y.-C., Park K., Seo J.-H., et al. . (2015). Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresour. Technol. 179, 467–472. 10.1016/j.biortech.2014.12.069 PubMed DOI
Kato D. M., Elía N., Flythe M., Lynn B. C. (2014). Pretreatment of lignocellulosic biomass using fenton chemistry. Bioresour. Technol. 162, 273–278. 10.1016/j.biortech.2014.03.151 PubMed DOI
Katsoni A., Mantzavinos D., Diamadopoulos E. (2014). Sequential treatment of diluted olive pomace leachate by digestion in a pilot scale UASB reactor and BDD electrochemical oxidation. Wat. Res. 57, 76–86. 10.1016/j.watres.2014.03.010 PubMed DOI
Kaur U., Oberoi H. S., Bhargav V. K., Sharma-Shivappa R., Dhaliwal S. S. (2012). Ethanol production from alkali- and ozone-treated cotton stalks using thermo-tolerant Pichia kudriavzevii HOP-1. Ind. Crops Prod. 37, 219–226. 10.1016/j.indcrop.2011.12.007 DOI
Kavitha S., Yukesh Kannah R., Yeom I. T., Do K.-U., Banu J. R. (2015). Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Bioresour. Technol. 197, 383–392. 10.1016/j.biortech.2015.08.131 PubMed DOI
Khandelwal S., Tailor Y. K., Kumar M. (2016). Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq. 215, 345–386. 10.1016/j.molliq.2015.12.015 DOI
Kim J., Realff M. J., Lee J. H., Whittaker C., Furtner L. (2011). Design of biomass processing network for biofuel production using an MILP model. Biomass Bioenerg. 35, 853–871. 10.1016/j.biombioe.2010.11.008 DOI
Kim J. Y., Lee J. H., Park J., Kim J. K., An D., Song I. K., et al. (2015). Catalytic pyrolysis of lignin over HZSM-5 catalysts: effect of various parameters on the production of aromatic hydrocarbon. J. Anal. Appl. Pyrolysis 114, 273–280. 10.1016/j.jaap.2015.06.007 DOI
Kirk T. K., Mozuch M. D., Tien M. (1985). Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysosporium burds. Biochem. J. 226, 455–460. 10.1042/bj2260455 PubMed DOI PMC
Koenigs J. W. (1974). Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber Sci. 6, 66–80.
Kou J., Wang J., Sun W., Lu C., Xu Z., Varma R. S. (2017). Selective enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 117, 1445–1514. 10.1021/acs.chemrev.6b00396 PubMed DOI
Kratky L., Jirout T. (2011). Biomass size reduction machines for enhancing biogas production. Chem. Eng. Technol. 34, 391–399. 10.1002/ceat.201000357 DOI
Kreetachat T., Damrongsri M., Punsuwon V., Vaithanomsat P., Chiemchaisri C., Chomsurin C. (2007). Effects of ozonation process on lignin-derived compounds in pulp and paper mill effluents. J. Hazard. Mater. 142, 250–257. 10.1016/j.jhazmat.2006.08.011 PubMed DOI
Ksibi M., Amor S. B., Cherif S., Elaloui E., Houas A., Elaloui M. (2003). Photodegradation of lignin from black liquor using a UV/TiO2 system. J. Photochem. Photobiol. A 154, 211–218. 10.1016/S1010-6030(02)00316-7 DOI
Kumar P., Barrett D. M., Delwiche M. J., Stroeve P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Bioresour. Technol. 162, 273–278. 10.1021/ie801542g DOI
Kumar R., Wyman C. E. (2009). Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol. Prog. 25, 302–314. 10.1002/btpr.102 PubMed DOI
Kurian J. K., Nair G. R., Hussain A., Raghavan G. S. V. (2013). Feedstocks, logistics and pretreatment process for sustainable lignocellulosic biorefineries: a comprehensive review. Renew. Sustain. Energ. Rev. 25, 205–219. 10.1016/j.rser.2013.04.019 DOI
Labat G. A. A., Gonçalves A. R. (2008). Oxidation in acidic medium of lignins from agricultural residues. Appl. Biochem. Biotechnol. 148, 151–161. 10.1007/s12010-007-8120-0 PubMed DOI
Lamers P., Tan E. C. D., Searcy E. M., Scarlata C. J., Cafferty K. G., Jacobson J. J. (2015). Strategic supply system design – a holistic evaluation of operational and production cost for a biorefinery supply chain. Biofuels Bioprod. Bioref. 9, 648–660. 10.1002/bbb.1575 DOI
Laurichesse S., Averous L. (2014). Chemical modification of lignins: towards biobased polymers. Progr. Polym. Sci. 39, 1266–1290. 10.1016/j.progpolymsci.2013.11.004 DOI
Lee H.-J., Ahn S. J., Seo Y.-J., Lee J.-W. (2013). A feasibility study on the multistage process for the oxalic acid pretreatment of a lignocellulosic biomass using electrodialysis. Bioresour. Technol. 130, 211–217. 10.1016/j.biortech.2012.12.061 PubMed DOI
Lee M., Blum L. C., Schmid E., Fenner K., von Gunten U. (2017). A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms. Environ. Sci. Process Impacts 19, 465–476. 10.1039/C6EM00584E PubMed DOI
Li B., Lv W., Zhang Q., Wang T., Ma L. (2014). Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: kinetics and products. J. Anal. Appl. Pyrolysis 108, 295–300. 10.1016/j.jaap.2014.04.002 DOI
Li H., Lei Z., Liu C., Zhang Z., Lu B. (2015). Photocatalytic degradation of lignin on synthesized Ag–AgCl/ZnO nanorods under solar light and preliminary trials for methane fermentation. Bioresour. Technol. 175, 494–501. 10.1016/j.biortech.2014.10.143 PubMed DOI
Li X., Sun C., Zhou B., He Y. (2015). Determination of hemicellulose, cellulose and lignin in moso bamboo by near infrared spectroscopy. Sci. Rep. 5:17210. 10.1038/srep17210 PubMed DOI PMC
Li X., Zhu K., Pang J., Tian M., Liu J., Rykov A. I., et al. (2018). Unique role of MÖssbauer spectroscopy in assessing structural features of heterogeneous catalysts. Appl. Catal. B Environ. 224, 518–532. 10.1016/j.apcatb.2017.11.004 DOI
Lin H., Oturan N., Wu J., Sharma V. K., Zhang H., Oturan M. A. (2017). Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes. Chemosphere 167, 220–227. 10.1016/j.chemosphere.2016.09.143 PubMed DOI
Lin Q., Chen G., Liu Y. (2012). Scale-up of microwave heating process for the production of bio-oil from sewage sludge. J. Anal. Appl. Pyrolysis 94, 114–119. 10.1016/j.jaap.2011.11.014 DOI
Lu Y., Wei X.-Y., Wen Z., Chen H.-B., Lu Y.-C., Zong Z.-M., et al. (2014). Photocatalytic depolymerization of rice husk over TiO2 with H2O2. Fuel Proc. Technol. 117, 8–16. 10.1016/j.fuproc.2013.04.001 DOI
Luo J., Zhang X., Zhang J. (2015). Carbazolic porous organic framework as an efficient, metal-free visible-light photocatalyst for organic synthesis. ACS Catal. 5, 2250–2254. 10.1021/acscatal.5b00025 DOI
Luo J., Zhang X., Lu J., Zhang J. (2017). Fine tuning the redox potentials of carbazolic porous organic frameworks for visible-light photoredox catalytic degradation of lignin ß-O-4 models. ACS Catal. 7, 5062–5070. 10.1021/acscatal.7b01010 DOI
Luque R., Triantafyllidis K. (2016). Valorization of lignocellulosic biomass. ChemCatChem 8, 1422–1423. 10.1002/cctc.201600226 DOI
Maldhure A. V., Ekhe J. D. (2013). Pyrolysis of purified kraft lignin in the presence of AlCl3 and ZnCl2. J. Environ. Chem. Eng. 1, 844–849. 10.1016/j.jece.2013.07.026 DOI
Malik A., Lenzen M., Geschke A. (2016). Triple bottom line study of a lignocellulosic biofuel industry. GCB Bioenergy 8, 96–110. 10.1111/gcbb.12240 DOI
Mamleeva N., Autlov S. A., Bazarnova N. G., Lunin V. V. (2009). Deliginfication of softwood by ozonation. Pure Appl. Chem. 81, 2081–2091. 10.1351/PAC-CON-08-10-11 DOI
Mancini G., Papirio S., Lens P. N. L., Esposito G. (2016). Solvent pretreatments of lignocellulosic materials to enhance biogas production: a review. Energy Fuels 30, 1892–1903. 10.1021/acs.energyfuels.5b02711 DOI
McDonough T. J. (1993). The chemistry of organosolv delignification. Tappi J. 76, 186–193.
Mirahmadi K., Mohseni Kabir M., Jeihanipour A., Karimi K., Taherzadeh M. (2010). Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5, 928–938. 10.15376/biores.5.2.928-938 DOI
Mirmohamadsadeghi S., Karimi K., Zamani A., Amiri H., Horvath I. S. (2014). Enhanced solid-state biogas production from lignocellulosic biomass by organosolv pretreatment. BioMed. Res. Int. 2014:350414 10.1155/2014/350414 PubMed DOI PMC
Mirzaei A., Chen Z., Haghighat F., Yerushalmi L. (2017). Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – a review. Chemosphere 174, 665–688. 10.1016/j.chemosphere.2017.02.019 PubMed DOI
Monlau F., Barakat A., Steyer J., Carrere H. (2012). Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour. Technol. 120, 241–247. 10.1016/j.biortech.2012.06.040 PubMed DOI
Morales M., Quintero J., Conejeros R., Aroca G. (2015). Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew. Sustain. Energ. Rev. 42, 1349–1361. 10.1016/j.rser.2014.10.097 DOI
Mosier N., Wyman C. E., Dale B. D., Elander R. T., Lee Y. Y., Holtzapple M., et al. . (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686. 10.1016/j.biortech.2004.06.025 PubMed DOI
Mulakhudair A. R., Hanotu J., Zimmerman W. (2017). Exploiting ozonolysis-microbe synergy for biomass processing: application in lignocellulosic biomass pretreatment. Biomass Bioenergy 105, 147–154. 10.1016/j.biombioe.2017.06.018 DOI
Nguyen J. D., Matsuura B. S., Stephenson C. R. J. (2014). A photochemical strategy for lignin degradation at room temperature. J. Am. Chem. Soc. 136, 1218–1221. 10.1021/ja4113462 PubMed DOI
Nguyen T. A., Kim K. R., Han S. J., Cho H. Y., Kim J. W., Park S. M., et al. . (2010). Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour. Technol. 101, 7432–7438. 10.1016/j.biortech.2010.04.053 PubMed DOI
Nieves D. C., Karimi K., Horvath I. S. (2011). Improvement of biogas production from oil palm empty fruit bunches (OPEFB). Ind. Crops Prod. 34, 1097–1101. 10.1016/j.indcrop.2011.03.022 DOI
Ohnishi H., Matsumura M., Tsubomura H., Iwasaki M. (1989). Bleaching of lignin solution by a photocatalyzed reaction on semiconductor photocatalysts. Ind. Eng. Chem. Res. 28, 719–724. 10.1021/ie00090a012 DOI
Ong C. B., Ng L. Y., Mohammad A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551. 10.1016/j.rser.2017.08.020 DOI
Ouiriemmi I., Karrab A., Oturan N., Pazos M., Rozales E., Gadri A., et al. (2017). Heterogeneous electro-Fenton using natural pyrite as solid catalyst for oxidative degradation of vanillic acid. J. Electroanal. Chem. 797, 69–77. 10.1016/j.jelechem.2017.05.028 DOI
Ouyang X., Zhu G., Huang X., Qiu X. (2015). Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds, J. Energy Chem. 24, 72–76. 10.1016/S2095-4956(15)60286-8 DOI
Ozdokur K. V., Moniruzzaman M., Yanik J., Ono T. (2016). Synthesis and characterization of a polyoxometalate-based ionic liquid catalyst for delignification of wood biomass. Wood Sci. Technol. 50, 1213–1226. 10.1007/s00226-016-0844-y DOI
Pan K., Tian M., Jiang Z.-H., Kjartanson B., Chen A. (2012). Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays. Electrochim. Acta 60, 147–153. 10.1016/j.electacta.2011.11.025 DOI
Papatheofanous M. G., Billa E., Koullas D. P., Monties B., Koukios E. G. (1995). Two-stage acid-catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresour. Technol. 54, 305–310. 10.1016/0960-8524(95)00152-2 DOI
Patnaik S., Sahoo D. P., Parida K. (2018). An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renew. Sustain. Energ. Rev. 82, 1297–1312. 10.1016/j.rser.2017.09.026 DOI
Pelckmas M., Renders T., Vyver S. V., Sels B. F. (2017). Bio-based amines through sustainable heterogeneous catalysis. Green Chem. 19, 5303–5321. 10.1039/C7GC02299A DOI
Perez A. T. E., Camargo M., Rincon P. C. N. (2017). Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: a bibliographic analysis. Renew. Sustain. Energ. Rev. 69, 350–359. 10.1016/j.rser.2016.11.084 DOI
Perron O. M., Colombari F. M., Rossi J. S., Moretti M. M. S., Bordignon S. M., Nunes C. C. C., et al. (2016). Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: effect of the enzymatic saccharification and the physical and chemical characteristics of the substrate. Bioresour. Technol. 218:69–76. 10.1016/j.biortech.2016.06.072 PubMed DOI
Prasad A., Sotenko M., Blenkinsopp T., Coles S. R. (2016). Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int. J. Life Cycle Assess. 21, 44–50. 10.1007/s11367-015-0985-5 DOI
Qiao W., Yan X., Ye J., Sun Y., Wang W., Zhang Z. (2011). Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew. Energy 36, 3313–3318. 10.1016/j.renene.2011.05.002 DOI
Raman S., Mohr A., Helliwell R., Robeiro B., Shortall O., Smith R., et al. . (2015). Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels. Biomass Bioenerg. 82, 49–62. 10.1016/j.biombioe.2015.04.022 PubMed DOI PMC
Reichert J., Albert J. (2017). Detailed kinetic investigations on the selective oxidation of biomass to formic acid (OxFA Process) using model substrates and real biomass. ACS Sustainable Chem. Eng. 5, 7383–7392. 10.1021/acssuschemeng.7b01723 DOI
Ribeiro B. E., Quintanilla M. A. (2015). Transitions in biofuel technologies: an appraisal of the social impacts of cellulosic ethanol using the Delphi method. Technol. Forecast. Soc. Change 92, 53–68. 10.1016/j.techfore.2014.11.006 DOI
Rincón L. E., Valencia M. J., Hernández V., Matallana L. G., Cardona C. A. (2015). Optimization of the Colombian biodiesel supply chain from oil palm crop based on techno-economical and environmental criteria. Energ. Econ. 47, 154–167. 10.1016/j.eneco.2014.10.018 DOI
Ringer M., Putsche V., Scahill J. (2006). Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis, Vol. NREL/TP-510-37779. Golden, CO: National Renewable Energy Laboratory.
Romero A., Cantero D. A., Nieto-Márquez A., Martínez C., Alonso E., Cocero M. J. (2016). Supercritical water hydrolysis of cellulosic biomass as effective pretreatment to catalytic production of hexitols and ethylene glycol over Ru/MCM-48. Green Chem. 18, 4051–4062. 10.1039/C6GC00374E DOI
Sapci Z. (2013). The effect of microwave pretreatment on biogas production from agricultural straws. Biores. Technol. 128, 487–494. 10.1016/j.biortech.2012.09.094 PubMed DOI
Sathitsuksanoh N., Zhu Z. G., Zhang Y. H. P. (2012). Cellulose solvent-based pretreatment for corn stover and Avicel: concentrated phosphoric acid versus ionic liquid [BMIM]Cl. Cellulose 19, 1161–1172. 10.1007/s10570-012-9719-z DOI
Schell D. J., Harwood C. (1994). Milling of lignocellulosic biomass e results of pilots-scale testing. Appl. Biochem. Biotechnol. 45-46, 159–168. 10.1007/BF02941795 DOI
Schmitt D., Regenbrecht C., Hartmer M., Stecker F., Waldvogel S. R. (2015). Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption. Beilstein J. Org. Chem. 11, 473–480. 10.3762/bjoc.11.53 PubMed DOI PMC
Shadbahr J., Zhang Y., Khan F. (2015). Life cycle assessment of bioethanol production from woodchips with modifications in the pretreatment process. Appl. Biochem. Biotechnol. 175, 1080–1091. 10.1007/s12010-014-1293-4 PubMed DOI
Shahriari H., Warith M., Kennedy K. J. (2012). Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag. 32, 41–52. 10.1016/j.wasman.2011.08.012 PubMed DOI
Shao D., Liang J., Cui X., Xu H., Yan W. (2014). Electrochemical oxidation of lignin by two typical electrodes: Ti/SbSnO2 and Ti/PbO2. Chem. Eng. J. 244, 288–295. 10.1016/j.cej.2014.01.074 DOI
Sharma V. K., Feng M. (2017). Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: a review. J. Hazard. Mater. [Epub ahead of print]. 10.1016/j.jhazmat.2017.09.043 PubMed DOI
Sharma V. K., Graham N. D. (2010). Oxidation of amino acids, peptides, and proteins by ozone. Ozone: Sci. Eng. 32, 81–90. 10.1080/01919510903510507 DOI
Shatalov A. A. (2016). Homogeneous polyoxometalate catalysis in lignocellulosic biomass conversion, in Anonymous Polyoxometalates: Properties, Structure and Synthesis, ed Roberts A. P. (New York, NY: Nova Scientific Publishers Inc.), 77–114.
Shimura K., Yoshida H. (2011). Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci. 4, 2467–2481. 10.1039/c1ee01120k DOI
Silva J. P. A., Carneiro L. M., Roberto I. C. (2013). Treatment of rice straw hemicellulosic hydrolysate with advanced oxidative processes: a new and promising detoxification method to improve the bioconversion process. Biotechnol. Biofuel. 6, 23–36. 10.1186/1754-6834-6-23 PubMed DOI PMC
Singh A., Pant D., Korres N. E., Nizami A.-S., Prasad S., Murphy J. D. (2010). Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour. Technol. 101, 5003–5012. 10.1016/j.biortech.2009.11.062 PubMed DOI
Sires I., Brillas E., Oturan M. A., Rodrigo M. A., Panizza M. (2014). Electrochemical advanced oxidation processes: today and tomorrow. a review. Environ. Sci. Pollut. Res. Int. 21, 8336–8367. 10.1007/s11356-014-2783-1 PubMed DOI
Song L.-J., Zhu N.-W., Yuan H.-P., Hong Y., Ding J. (2010). Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment. Wat. Res. 44, 4371–4378. 10.1016/j.watres.2010.05.052 PubMed DOI
Song Z., Yang G., Guo Y., Zhang T. (2012). Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources 7, 3223–3236. 10.15376/biores.7.3.3223-3236 DOI
Steter J. R., Brillas E., Sirés I. (2018). Solar photoelectro-Fenton treatment of a mixture of parabens spiked into secondary treated wastewater effluent at low input current. Appl. Catal. B Environ. 224, 410–418. 10.1016/j.apcatb.2017.10.060 DOI
Sun Y., Cheng J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11. 10.1016/S0960-8524(01)00212-7 PubMed DOI
Tabone M. D., Cregg J. J., Beckman E. J., Landis A. E. (2010). Sustainability metrics: life cycle assessment and green design in polymers. Environ. Sci. Technol. 44, 8264–8269. 10.1021/es101640n PubMed DOI
Tadele K., Verma S., Gonzalez M. A., Varma R. S. (2017). A sustainable approach to empower the future: upgrading of biomass via process intensification. Green Chem. 19, 1624–1627. 10.1039/C6GC03568J PubMed DOI PMC
Tarkow H., Feist W. C. (1969). A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Adv. Chem. 95, 197–218. 10.1021/ba-1969-0095.ch012 DOI
Tian M., Wen J., McDonald D., Asmussen R. M., Chen A. (2010). A novel approach for lignin modification and degradation. Electrochem. Commun. 12, 527–530. 10.1016/j.elecom.2010.01.035 DOI
Tolba R., Tian M., Wen J., Jiang Z.-H., Chen A. (2010). Electrochemical oxidation of lignin at IrO2-based oxide electrodes. J. Electroanalyt. Chem. 649, 9–15. 10.1016/j.jelechem.2009.12.013 DOI
Travaini R., Martin-Juarez J., Lorenzo-Hernando A., Bolado-Rodriguez S. (2016). Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour. Technol. 199, 2–12. 10.1016/j.biortech.2015.08.143 PubMed DOI
Tuck C. O., Pérez E., Horváth I. T., Sheldon R. A., Poliakoff M. (2012). Valorization of biomass: deriving more value from waste. Science 337, 695–699. 10.1126/science.1218930 PubMed DOI
Tufvesson L. M., Tufvesson P., Woodley J. M., Börjesson P. (2013). Life cycle assessment in green chemistry: overview of key parameters and methodological concerns. Int. J. Life Cycle Assess. 18, 431–444. 10.1007/s11367-012-0500-1 DOI
Turkulin H., Holzer L., Sell J. (2005). Application of ESEM technique in wood research: part I. optimization of imaging parameters and working conditions. Wood Fiber Sci. 37, 552–564.
Verma S., Baig R. B. N., Nadagouda M. N., Varma R. S. (2016a). Visible light mediated upgrading of biomass to biofuel. Green Chem. 18, 1327–1333. 10.1039/C5GC02951A DOI
Verma S., Baig R. B. N., Nadagouda M. N., Varma R. S. (2016b). Sustainable strategy utilizing biomass: visible light-mediated synthesis of γ-valerolactone. ChemCatChem 8, 690–693. 10.1002/cctc.201501352 DOI
Verma S., Baig R. B. N., Nadagouda M. N., Len C., Varma R. S. (2017a). Sustainable pathway to furanics from biomass via heterogeneous organo-catalysis. Green Chem. 19, 164–168. 10.1039/C6GC02551J PubMed DOI PMC
Verma S., Nadagouda M. N., Varma R. S. (2017b). Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid. Nat. Sci. Rpts. 7:13596. 10.1038/s41598-017-14016-5 PubMed DOI PMC
von Gunten U. (2003). Ozonation of drinking water: part I. oxidation kinetics and product formation. Water Res. 37, 1443–1467. 10.1016/S0043-1354(02)00457-8 PubMed DOI
Wakerley D. W., Kuehnel M. F., Orchard K. L., Ly K. H., Rosser T. E., Reisner E. (2017). Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat. Energy 2:17021 10.1038/nenergy.2017.21 DOI
Wang L., Littlewood J., Murphy R. J. (2013). Environmental sustainability of bioethanol production from wheat straw in the UK. Renew. Sustain. Energ. Rev. 28, 715–725. 10.1016/j.rser.2013.08.031 DOI
Wang Y., Fan L., Shan S., Liu Y., Ruan R. (2016). Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J. Anal. Appl. Pyrolysis 119, 104–113. 10.1016/j.jaap.2016.03.011 DOI
Xiong K., Wan W., Chen J. G. (2016). Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces. Surf. Sci. 652, 91–97. 10.1016/j.susc.2016.02.011 DOI
Xiong K., Yu W., Vlachos D. G., Chen J. G. (2015). Reaction pathways of biomass-derived oxygenates over metals and carbides: from model surfaces to supported catalysts. ChemCatChem 7, 1402–1421. 10.1002/cctc.201403067 DOI
Xu F., Yu J., Tesso T., Dowell F., Wang D. (2013). Qualitative and quantitative analysis of Lignocellulosic biomass using infrared techniques: a mini-review. Appl. Energ. 104, 801–809. 10.1016/j.apenergy.2012.12.019 DOI
Xu J., Jiang J., Hse C., Shupe T. F. (2012). Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chem. 14, 2821–2830. 10.1039/c2gc35805k DOI
Xu Y., Huang Y., Zhang B. (2016). Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides. Inorg. Chem. Front. 3, 591–615. 10.1039/C5QI00217F DOI
Yang L., Su J., Carl S., Lynam J. G., Yang X., Lin H. (2015). Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media. Appl. Catal. B Environ. 162, 149–157. 10.1016/j.apcatb.2014.06.025 DOI
Yasuda M., Miura A., Yuki R., Nakamura Y., Shiragami T., Ishii Y., et al. (2011). The effect of TiO2-photocatalytic pretreatment on the biological production of ethanol from lignocelluloses. J. Photochem. Photobiol. 220, 195–199. 10.1016/j.jphotochem.2011.04.019 DOI
Yong X., Schoonen M. A. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556. 10.2138/am-2000-0416 DOI
Ye C., Yuan H., Dai X., Lou Z., Zhu N. (2016). Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production. Env. Technol. 37, 2935–2944. 10.1080/09593330.2016.1170209 PubMed DOI
Zamboni A., Shah N., Bezzo F. (2009). Spatially explicit static model for the strategic design of future bioethanol production systems. 1. cost minimization. Energy Fuels 23, 5121–5133. 10.1021/ef900456w DOI
Zhang T., Zhu M.-J. (2016). Enhancing enzymolysis and fermentation efficiency of sugarcane bagasse by synergistic pretreatment of Fenton reaction and sodium hydroxide extraction. Bioresour. Technol. 214, 769–777. 10.1016/j.biortech.2016.05.032 PubMed DOI
Zhang Y., Zhao J., Xu F., Li Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progr. Energy Combust. Sci. 42, 35–53. 10.1016/j.pecs.2014.01.001 DOI