Coding variants in NOD-like receptors: An association study on risk and survival of colorectal cancer

. 2018 ; 13 (6) : e0199350. [epub] 20180621

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29928061

Grantová podpora
MC_UU_00007/1 Medical Research Council - United Kingdom
MR/K026992/1 Medical Research Council - United Kingdom
C348/A18927 Cancer Research UK - United Kingdom
CZD/16/6 Chief Scientist Office - United Kingdom
12076 Cancer Research UK - United Kingdom
U01 CA137088 NCI NIH HHS - United States
MC_U127527198 Medical Research Council - United Kingdom
MR/K018647/1 Medical Research Council - United Kingdom
18927 Cancer Research UK - United Kingdom
104036/Z/14/Z Wellcome Trust - United Kingdom
G0600329 Medical Research Council - United Kingdom
BB/F019394/1 Biotechnology and Biological Sciences Research Council - United Kingdom
MC_PC_U127527198 Medical Research Council - United Kingdom
G0700704 Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
G0600237 Medical Research Council - United Kingdom
G0700704/84698 Medical Research Council - United Kingdom

Nod-like receptors (NLRs) are important innate pattern recognition receptors and regulators of inflammation or play a role during development. We systematically analysed 41 non-synonymous single nucleotide polymorphisms (SNPs) in 21 NLR genes in a Czech discovery cohort of sporadic colorectal cancer (CRC) (1237 cases, 787 controls) for their association with CRC risk and survival. Five SNPs were found to be associated with CRC risk and eight with survival at 5% significance level. In a replication analysis using data of two large genome-wide association studies (GWASs) from Germany (DACHS: 1798 cases and 1810 controls) and Scotland (2210 cases and 9350 controls) the associations found in the Czech discovery set were not confirmed. However, expression analysis in human gut-related tissues and immune cells revealed that the NLRs associated with CRC risk or survival in the discovery set were expressed in primary human colon or rectum cells, CRC tissue and/or cell lines, providing preliminary evidence for a potential involvement of NLRs in general in CRC development and/or progression. Most interesting was the finding that the enigmatic development-related NLRP5 (also known as MATER) was not expressed in normal colon tissue but in colon cancer tissue and cell lines. Future studies may show whether regulatory variants instead of coding variants might affect the expression of NLRs and contribute to CRC risk and survival.

Zobrazit více v PubMed

Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50. Epub 2011/05/28. doi: 10.1016/j.immuni.2011.05.006 . PubMed DOI

Oviedo-Boyso J, Bravo-Patino A, Baizabal-Aguirre VM. Collaborative action of Toll-like and NOD-like receptors as modulators of the inflammatory response to pathogenic bacteria. Mediators of inflammation. 2014;2014:432785 doi: 10.1155/2014/432785 ; PubMed Central PMCID: PMC4267164. PubMed DOI PMC

Wilmanski JM, Petnicki-Ocwieja T, Kobayashi KS. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases. J Leukoc Biol. 2008;83(1):13–30. Epub 2007/09/19. doi: jlb.0607402 [pii] doi: 10.1189/jlb.0607402 . PubMed DOI PMC

Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nature reviews Immunology. 2010;10(2):131–44. Epub 2010/01/26. doi: 10.1038/nri2707 . PubMed DOI

Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-like receptor-gut microbiota interactions: perturb at your own risk! Annu Rev Physiol. 2012;74:177–98. Epub 2011/11/01. doi: 10.1146/annurev-physiol-020911-153330 . PubMed DOI

Weber AN, Forsti A. Toll-like receptor genetic variants and colorectal cancer. Oncoimmunology. 2014;3(1):e27763 Epub 2014/05/03. doi: 10.4161/onci.27763 ; PubMed Central PMCID: PMC4004619. PubMed DOI PMC

Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J. 2009;420(1):1–16. Epub 2009/04/23. doi: BJ20090272 [pii] doi: 10.1042/BJ20090272 . PubMed DOI

Lupfer C, Kanneganti TD. Unsolved Mysteries in NLR Biology. Front Immunol. 2013;4:285 Epub 2013/09/26. doi: 10.3389/fimmu.2013.00285 ; PubMed Central PMCID: PMC3775000. PubMed DOI PMC

Fernandes R, Tsuda C, Perumalsamy AL, Naranian T, Chong J, Acton BM, et al. NLRP5 mediates mitochondrial function in mouse oocytes and embryos. Biol Reprod. 2012;86(5):138, 1–10. doi: 10.1095/biolreprod.111.093583 ; PubMed Central PMCID: PMC3364921. PubMed DOI PMC

Castro FA, Forsti A, Buch S, Kalthoff H, Krauss C, Bauer M, et al. TLR-3 polymorphism is an independent prognostic marker for stage II colorectal cancer. Eur J Cancer. 2011;47(8):1203–10. doi: 10.1016/j.ejca.2010.12.011 . PubMed DOI

Klimosch SN, Forsti A, Eckert J, Knezevic J, Bevier M, von Schonfels W, et al. Functional TLR5 genetic variants affect human colorectal cancer survival. Cancer Res. 2013;73(24):7232–42. doi: 10.1158/0008-5472.CAN-13-1746 . PubMed DOI

Wang H, Flannery SM, Dickhofer S, Huhn S, George J, Kubarenko AV, et al. A coding IRAK2 protein variant compromises Toll-like receptor (TLR) signaling and is associated with colorectal cancer survival. J Biol Chem. 2014;289(33):23123–31. doi: 10.1074/jbc.M113.492934 ; PubMed Central PMCID: PMC4132810. PubMed DOI PMC

Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, et al. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc Natl Acad Sci U S A. 2005;102(50):18129–34. doi: 10.1073/pnas.0505256102 ; PubMed Central PMCID: PMC1306791. PubMed DOI PMC

Ungerbäck J, Belenki D, Jawad ul-Hassan A, Fredrikson M, Fransen K, Elander N, et al. Genetic variation and alterations of genes involved in NFkappaB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis. 2012;33(11):2126–34. Epub 2012/07/31. doi: 10.1093/carcin/bgs256 . PubMed DOI

Cooper GM, Stone EA, Asimenos G, Program NCS, Green ED, Batzoglou S, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–13. doi: 10.1101/gr.3577405 ; PubMed Central PMCID: PMC1172034. PubMed DOI PMC

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15(8):1034–50. doi: 10.1101/gr.3715005 ; PubMed Central PMCID: PMC1182216. PubMed DOI PMC

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20(1):110–21. doi: 10.1101/gr.097857.109 ; PubMed Central PMCID: PMC2798823. PubMed DOI PMC

Naccarati A, Pardini B, Stefano L, Landi D, Slyskova J, Novotny J, et al. Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis. 2012;33(7):1346–51. Epub 2012/05/15. doi: 10.1093/carcin/bgs172 . PubMed DOI

Brenner H, Chang-Claude J, Jansen L, Knebel P, Stock C, Hoffmeister M. Reduced risk of colorectal cancer up to 10 years after screening, surveillance, or diagnostic colonoscopy. Gastroenterology. 2014;146(3):709–17. doi: 10.1053/j.gastro.2013.09.001 . PubMed DOI

Rudolph A, Hein R, Hoffmeister M, Forsti A, Hemminki K, Risch A, et al. Copy number variations of GSTT1 and GSTM1, colorectal cancer risk and possible effect modification of cigarette smoking and menopausal hormone therapy. Int J Cancer. 2012;131(5):E841–8. doi: 10.1002/ijc.27428 . PubMed DOI

Theodoratou E, Farrington SM, Tenesa A, McNeill G, Cetnarskyj R, Barnetson RA, et al. Modification of the inverse association between dietary vitamin D intake and colorectal cancer risk by a FokI variant supports a chemoprotective action of Vitamin D intake mediated through VDR binding. Int J Cancer. 2008;123(9):2170–9. doi: 10.1002/ijc.23769 . PubMed DOI

Timofeeva MN, Kinnersley B, Farrington SM, Whiffin N, Palles C, Svinti V, et al. Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer. Sci Rep. 2015;5:16286 doi: 10.1038/srep16286 ; PubMed Central PMCID: PMC4639776. PubMed DOI PMC

Hoffmeister M, Jansen L, Rudolph A, Toth C, Kloor M, Roth W, et al. Statin use and survival after colorectal cancer: the importance of comprehensive confounder adjustment. J Natl Cancer Inst. 2015;107(6):djv045 doi: 10.1093/jnci/djv045 . PubMed DOI

Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology. 2013;144(4):799–807 e24. doi: 10.1053/j.gastro.2012.12.020 ; PubMed Central PMCID: PMC3636812. PubMed DOI PMC

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic epidemiology. 2010;34(8):816–34. doi: 10.1002/gepi.20533 ; PubMed Central PMCID: PMC3175618. PubMed DOI PMC

Barrett JH, Smith G, Waxman R, Gooderham N, Lightfoot T, Garner RC, et al. Investigation of interaction between N-acetyltransferase 2 and heterocyclic amines as potential risk factors for colorectal cancer. Carcinogenesis. 2003;24(2):275–82. . PubMed

Smith BH, Campbell A, Linksted P, Fitzpatrick B, Jackson C, Kerr SM, et al. Cohort Profile: Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness. International journal of epidemiology. 2013;42(3):689–700. doi: 10.1093/ije/dys084 . PubMed DOI

Smith BH, Campbell H, Blackwood D, Connell J, Connor M, Deary IJ, et al. Generation Scotland: the Scottish Family Health Study; a new resource for researching genes and heritability. BMC Med Genet. 2006;7:74 doi: 10.1186/1471-2350-7-74 ; PubMed Central PMCID: PMC1592477. PubMed DOI PMC

Deary IJ, Gow AJ, Pattie A, Starr JM. Cohort profile: the Lothian Birth Cohorts of 1921 and 1936. International journal of epidemiology. 2012;41(6):1576–84. doi: 10.1093/ije/dyr197 . PubMed DOI

Quanto. Quanto http://hydra.usc.edu/gxe/. Available from: http://hydra.usc.edu/gxe/.

Klimosch SN, Forsti A, Eckert J, Knezevic J, Bevier M, von Schonfels W, et al. Functional TLR5 genetic variants affect human colorectal cancer survival. Cancer research. 2013;73(24):7232–42. Epub 2013/10/25. doi: 10.1158/0008-5472.CAN-13-1746 . PubMed DOI

Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A, Kelly R, et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS letters. 2002;530(1–3):73–8. Epub 2002/10/22. . PubMed

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. Epub 2011/03/08. doi: 10.1016/j.cell.2011.02.013 . PubMed DOI

Neerincx A, Castro W, Guarda G, Kufer TA. NLRC5, at the Heart of Antigen Presentation. Front Immunol. 2013;4:397 Epub 2013/12/10. doi: 10.3389/fimmu.2013.00397 ; PubMed Central PMCID: PMC3837245. PubMed DOI PMC

Watson NF, Ramage JM, Madjd Z, Spendlove I, Ellis IO, Scholefield JH, et al. Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer. 2006;118(1):6–10. Epub 2005/07/09. doi: 10.1002/ijc.21303 . PubMed DOI

Lukens JR, Gurung P, Shaw PJ, Barr MJ, Zaki MH, Brown SA, et al. The NLRP12 Sensor Negatively Regulates Autoinflammatory Disease by Modulating Interleukin-4 Production in T Cells. Immunity. 2015;42(4):654–64. Epub 2015/04/19. doi: 10.1016/j.immuni.2015.03.006 S1074-7613(15)00120-X [pii]. ; PubMed Central PMCID: PMC4412374. PubMed DOI PMC

Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA Jr., et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut. 2018;67(6):1168–80. doi: 10.1136/gutjnl-2017-315537 ; PubMed Central PMCID: PMC5943183. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...