The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BR/132/PI/TILAPIA
Federaal Wetenschapsbeleid
GB-TAF-2984
SYNTHESYS
GB-TAF-4940
SYNTHESYS
ZRDC2014MP084
Vlaamse Interuniversitaire Raad
P505/12/G112 (ECIP)
Grantová Agentura České Republiky
K220314N
Fonds Wetenschappelijk Onderzoek
Mbisa Congo project
Belgian Development Cooperation
BOF Reserve Fellowship
Universiteit Hasselt
PubMed
29973152
PubMed Central
PMC6032552
DOI
10.1186/s12864-018-4893-5
PII: 10.1186/s12864-018-4893-5
Knihovny.cz E-zdroje
- Klíčová slova
- Cichlidae, Cichlidogyrus, Clariidae, Gene order, Gyrodactylus, Macrogyrodactylus, Mitogenome, Monogenea, Monopisthocotylea, Phylogenomics,
- MeSH
- cichlidy parazitologie MeSH
- fylogeneze MeSH
- genom mitochondriální MeSH
- mitochondrie klasifikace genetika MeSH
- ploštěnci genetika MeSH
- pořadí genů MeSH
- protozoální DNA chemie izolace a purifikace metabolismus MeSH
- protozoální proteiny klasifikace genetika MeSH
- RNA ribozomální klasifikace genetika MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální DNA MeSH
- protozoální proteiny MeSH
- RNA ribozomální MeSH
BACKGROUND: Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective. RESULTS: Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising for primer development. Gene order was identical for protein-coding genes and differed between the African representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids, instead of the supposedly 'primitive' African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved, although gene order suggests it is closely related to marine ancyrocephalines. CONCLUSIONS: The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for which few primers are available.
Biology Department Royal Museum for Central Africa Leuvensesteenweg 13 B 3080 Tervuren Belgium
Department of Life Sciences Natural History Museum Cromwell Road London SW7 5BD UK
Zobrazit více v PubMed
Cribb TH, Chisholm LA, Bray RA. Diversity in the Monogenea and Digenea: does lifestyle matter? Int J Parasitol. 2002;32:321–328. doi: 10.1016/S0020-7519(01)00333-2. PubMed DOI
Pugachev ON, Gerasev PI, Gussev AV, Ergens R, Khotenowsky I. Guide to Monogenoidea of freshwater fish of Palaearctic and Amur regions. Milan: Ledizione-LediPublishing; 2009.
Zahradníčková P, Barson M, Luus-Powell WJ, Přikrylová I. Species of Gyrodactylus Von Nordmann, 1832 (Platyhelminthes: Monogenea) from cichlids from Zambezi and Limpopo river basins in Zimbabwe and South Africa: evidence for unexplored species richness. Syst Parasitol. 2016;93:679–700. doi: 10.1007/s11230-016-9652-x. PubMed DOI
Bakke TA, Harris PD, Cable J. Host specificity dynamics: observations on gyrodactylid monogeneans. Int J Parasitol. 2002;32:281–308. doi: 10.1016/S0020-7519(01)00331-9. PubMed DOI
Paladini G, Longshaw M, Gustinelli A, Shinn AP. Parasitic diseases in aquaculture: their biology, diagnosis and control. In: Austin B, Newaj-Fyzul A, editors. Diagnosis and control of diseases of fish and shellfish. Chichester: John Wiley & Sons, Ltd; 2017. pp. 37–107.
Bakke TA, Cable J, Harris PD. The biology of gyrodactylid monogeneans: the “Russian doll-killers”. Adv Parasit. 2007;64:161–376. doi: 10.1016/S0065-308X(06)64003-7. PubMed DOI
Paperna I. Parasites, infections and diseases of fishes in Africa – An Update CIFA Technical Paper 31. Rome: Food and Agriculture Organization of the United Nations; 1996.
Lio-Po GD, Lim LHS. Infectious diseases of warmwater fish in fresh water. In: Woo PTK, Bruno DW, editors. Diseases and disorders of finfish in cage culture. 2nd edition. Wallingford and. Boston: CAB International; 2014. pp. 193–253.
Pouomogne V. Clarias gariepinus. In: Cultured aquatic species information Programme. FAO fisheries and aquaculture department. 2010. http://www.fao.org/fishery/culturedspecies/Clarias_gariepinus/en. Accessed 3 Jan 2017.
Deines AM, Wittmann ME, Deines JM, Lodge DM. Tradeoffs among ecosystem services associated with global tilapia introductions. Rev Fish Sci Aquac. 2016;24:178–191. doi: 10.1080/23308249.2015.1115466. DOI
Beletew M, Getahun A, Vanhove MPM. First report of monogenean flatworms from Lake Tana, Ethiopia: gill parasites of the commercially important Clarias gariepinus (Teleostei: Clariidae) and Oreochromis niloticus tana (Teleostei: Cichlidae) Parasite Vector. 2016;9:410. doi: 10.1186/s13071-016-1691-2. PubMed DOI PMC
Vanhove MPM, Hablützel PI, Pariselle A, Šimková A, Huyse T, Raeymaekers JAM. Cichlids: a host of opportunities for evolutionary parasitology. Trends Parasitol. 2016;32:820–832. doi: 10.1016/j.pt.2016.07.002. PubMed DOI
Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, et al. Disease and health management in Asian aquaculture. Vet Parasitol. 2005;132:249–272. doi: 10.1016/j.vetpar.2005.07.005. PubMed DOI
Akoll P, Konecny R, Mwanja WW, Nattabi JK, Agoe C, Schiemer F. Parasite fauna of farmed Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus) in Uganda. Parasitol Res. 2012;110:315–323. doi: 10.1007/s00436-011-2491-4. PubMed DOI
Smit NJ, Malherbe W, Hadfield KA. Alien freshwater fish parasites from South Africa: diversity, distribution, status and the way forward. Int J Parasitol Parasites Wildl. 2017;6:386–401. doi: 10.1016/j.ijppaw.2017.06.001. PubMed DOI PMC
Akoll P, Konecny R, Mwanja WW, Schiemer F. Risk assessment of parasitic helminths on cultured Nile tilapia (Oreochromis niloticus, L.) Aquaculture. 2012;356:123–127. doi: 10.1016/j.aquaculture.2012.05.027. DOI
Ek-Huchim JP, Jimenez-Garcia I, Pérez-Vega JA, Rodríguez-Canul R. Non-lethal detection of DNA from Cichlidogyrus spp. (Monogenea, Ancyrocephalinae) in gill mucus of the Nile tilapia Oreochromis niloticus. Dis Aquat Org. 2012;98:155–162. doi: 10.3354/dao02435. PubMed DOI
Barson M, Přikrylová I, Vanhove MPM, Huyse T. Parasite hybridization in African Macrogyrodactylus spp. (Monogenea, Platyhelminthes) signals historical host distribution. Parasitology. 2010;137:1585–1595. doi: 10.1017/S0031182010000302. PubMed DOI
Přikrylová I, Vanhove MPM, Janssens SB, Billeter PA, Huyse T. Tiny worms from a mighty continent: high diversity and new phylogenetic lineages of African monogeneans. Mol Phylogenet Evol. 2013;67:43–52. doi: 10.1016/j.ympev.2012.12.017. PubMed DOI
Malmberg G. On the evolution within the family Gyrodactylidae (Monogenea) Int J Parasitol. 1998;28:1625–1635. doi: 10.1016/S0020-7519(98)00058-7. PubMed DOI
Bachmann L, Fromm B, Patella de Azambuja L, Boeger WA. The mitochondrial genome of the egg-laying flatworm Aglaiogyrodactylus forficulatus (Platyhelminthes: Monogenoidea) Parasite Vector. 2016;9:285. doi: 10.1186/s13071-016-1586-2. PubMed DOI PMC
Gilmore SR, Cone DK, Lowe G, King SK, Jones SRM, Abbott CL. Molecular phylogeny of Gyrodactylus (Monogenea) parasitizing fishes in fresh water, estuarine, and marine habitats in Canada. Can J Zool. 2012;90:776–786. doi: 10.1139/z2012-040. DOI
Kritsky DC, Boeger WA. Phylogeny of the Gyrodactylidae and the phylogenetic status of Gyrodactylus Nordmann, 1832 (Platyhelminthes: Monogenoidea) In: Combes C, Jourdane J, editors. Taxonomie, Ecologie et Evolution des Métazoaires Parasites. Taxonomy, Ecology and Evolution of Metazoan Parasites (Livre hommage à Louis Euzet) Perpignan: Presses Universitaires de Perpignan; 2003. pp. 37–58.
Minárik G, Bazsalovicsová E, Zvijáková Ľ, Štefka J, Pálková L, Králová-Hromadová I. Development and characterization of multiplex panels of polymorphic microsatellite loci in giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), using next-generation sequencing approach. Mol Biochem Parasit. 2014;195:30–33. doi: 10.1016/j.molbiopara.2014.06.003. PubMed DOI
Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads - a baiting and iterative mapping approach. Nucleic Acids Res. 2013;41:e129. doi: 10.1093/nar/gkt371. PubMed DOI PMC
Brabec J, Kostadinova A, Scholz T, Littlewood DTJ. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens. Parasite Vector. 2015;8:336. doi: 10.1186/s13071-015-0949-4. PubMed DOI PMC
Pariselle A, Euzet L. Systematic revision of dactylogyridean parasites (Monogenea) from cichlid fishes in Africa, the Levant and Madagascar. Zoosystema. 2009;31:849–898. doi: 10.5252/z2009n4a6. DOI
Vanhove MPM, Tessens B, Schoelinck C, Jondelius U, Littlewood DTJ, Artois T, et al. Problematic barcoding in flatworms: a case-study on monogeneans and rhabdocoels (Platyhelminthes) ZooKeys. 2013;365:355–379. doi: 10.3897/zookeys.365.5776. PubMed DOI PMC
Wit J, Gilleard JS. Resequencing helminth genomes for population and genetic studies. Trends Parasitol. 2017;33:388–399. doi: 10.1016/j.pt.2017.01.009. PubMed DOI
Huyse T, Plaisance L, Webster BL, Mo TA, Bakke TA, Bachmann L, et al. The mitochondrial genome of Gyrodactylus salaris (Platyhelminthes: Monogenea), a pathogen of Atlantic salmon (Salmo salar) Parasitology. 2007;134:739–747. doi: 10.1017/S0031182006002010. PubMed DOI
Huyse T, Buchmann K, Littlewood DTJ. The mitochondrial genome of Gyrodactylus derjavinoides (Platyhelminthes: Monogenea) – a mitogenomic approach for Gyrodactylus species and strain identification. Gene. 2008;417:27–34. doi: 10.1016/j.gene.2008.03.008. PubMed DOI
Plaisance L, Huyse T, Littlewood DTJ, Bakke TA, Bachmann L. The complete mitochondrial DNA sequence of the monogenean Gyrodactylus thymalli (Platyhelminthes: Monogenea), a parasite of grayling (Thymallus thymallus) Mol Biochem Parasitol. 2007;154:190–194. doi: 10.1016/j.molbiopara.2007.04.012. PubMed DOI
Ye F, King SD, Cone DK, You P. The mitochondrial genome of Paragyrodactylus variegatus (Platyhelminthes: Monogenea): differences in major non-coding region and gene order compared to Gyrodactylus. Parasite Vector. 2014;7:377. doi: 10.1186/1756-3305-7-377. PubMed DOI PMC
Ye F, Easy RH, King SD, Cone DK, You P. Comparative analyses within Gyrodactylus (Platyhelminthes: Monogenea) mitochondrial genomes and conserved polymerase chain reaction primers for gyrodactylid mitochondrial DNA. J Fish Dis. 2017;40:541–555. doi: 10.1111/jfd.12539. PubMed DOI
Zhang D, Zou H, Zhou S, Wu SG, Li WX, Wang GT. The complete mitochondrial genome of Gyrodactylus kobayashii (Platyhelminthes: Monogenea) Mitochondr DNA Part B. 2016;1:154–155. doi: 10.1080/23802359.2016.1144107. PubMed DOI PMC
Zou H, Zhang D, Li W, Zhou S, Wu S, Wang G. The complete mitochondrial genome of Gyrodactylus gurleyi (Platyhelminthes: Monogenea) Mitochondr DNA Part B. 2016;1:383–385. doi: 10.1080/23802359.2016.1172042. PubMed DOI PMC
Zhang J, Wu X, Li Y, Xie M, Li A. The complete mitochondrial genome of Tetrancistrum nebulosi (Monogenea: Ancyrocephalidae) Mitochondr DNA Part A. 2014;27:22–23. doi: 10.3109/19401736.2013.867441. PubMed DOI
Zhang D, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, et al. Sequencing, characterization and phylogenomics of the complete mitochondrial genome of Dactylogyrus lamellatus (Monogenea: Dactylogyridae). J Helminthol. 2017; 10.1017/S0022149X17000578. PubMed
Briscoe AG, Bray RA, Brabec J, Littlewood DTJ. The mitochondrial genome and ribosomal operon of Brachycladium goliath (Digenea: Brachycladiidae) recovered from a stranded minke whale. Parasitol Int. 2016;65:271–275. doi: 10.1016/j.parint.2016.02.004. PubMed DOI
Malmberg G. The excretory systems and the marginal hooks as a basis for the systematics of Gyrodactylus (Trematoda, Monogenea) Ark Zool. 1970;23:1–235.
Bueno-Silva M, Boeger WA, Pie MR. Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae) Int J Parasitol. 2011;41:657–667. doi: 10.1016/j.ijpara.2011.01.002. PubMed DOI
Kmentová N, Gelnar M, Mendlová M, Van Steenberge M, Koblmüller S, Vanhove MPM. Reduced host-specificity in a parasite infecting non-littoral Lake Tanganyika cichlids evidenced by intraspecific morphological and genetic diversity. Sci Rep. 2016;6:39605. doi: 10.1038/srep39605. PubMed DOI PMC
Hansen H, Bakke TA, Bachmann L. DNA taxonomy and barcoding of monogenean parasites: lessons from Gyrodactylus. Trends Parasitol. 2007;23:363–367. doi: 10.1016/j.pt.2007.06.007. PubMed DOI
Bueno-Silva M, Boeger WA. Neotropical Monogenoidea. 58. Three new species of Gyrodactylus (Gyrodactylidae) from Scleromystax spp. (Callichthyidae) and the proposal of COII gene as an additional fragment for barcoding gyrodactylids. Folia Parasit. 2014;61:213. doi: 10.14411/fp.2014.028. PubMed DOI
Meinilä M, Kuusela J, Ziętara MS, Lumme J. Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea: Gyrodactylidae) Int J Parasitol. 2004;34:515–526. doi: 10.1016/j.ijpara.2003.12.002. PubMed DOI
Plaisance L, Rousset V, Morand S, Littlewood DTJ. Colonization of pacific islands by parasites of low dispersal abilities: phylogeography of two monogenean species parasitizing butterflyfishes in the indo-West Pacific Ocean. J Biogeogr. 2008;35:76–87.
Wang M, Yan S, Brown CL, Shaharom-Harrison F, Shi S-F, Yang T-B. Phylogeography of Tetrancistrum nebulosi (Monogenea, Dactylogyridae) on the host of mottled spinefoot (Siganus fuscescens) in the South China Sea, inferred from mitochondrial COI and ND2 genes. Mitochondr DNA Part A. 2016;27:3865–3875. doi: 10.3109/19401736.2014.971240. PubMed DOI
Huyse T, Oeyen M, Larmuseau MHD, Volckaert FAM. Co-phylogeographic study of the flatworm Gyrodactylus gondae and its goby host Pomatoschistus minutus. Parasitol Int. 2017;66:119–125. doi: 10.1016/j.parint.2016.12.008. PubMed DOI
Vanhove MPM, Pariselle A, Van Steenberge M, Raeymaekers JAM, Hablützel PI, Gillardin C, et al. Hidden biodiversity in an ancient Lake: phylogenetic congruence between lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci Rep. 2015;5:13669. doi: 10.1038/srep13669. PubMed DOI PMC
Plaisance L, Littlewood DTJ, Olson PD, Morand S. Molecular phylogeny of gill monogeneans (Platyhelminthes, Monogenea, Dactylogyridae) and colonization of indo-West Pacific butterflyfish hosts (Perciformes, Chaetodontidae) Zool Scr. 2005;34:425–436. doi: 10.1111/j.1463-6409.2005.00191.x. DOI
Park J-K, Kim K-H, Kang S, Kim W, Eom KS. Littlewood DTJ. A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of Microcotyle sebastis (Monogenea: Platyhelminthes) BMC Evol Biol. 2007;7:11. doi: 10.1186/1471-2148-7-11. PubMed DOI PMC
Waeschenbach A, Webster BL, Littlewood DTJ. Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Mol Phylogenet Evol. 2012;63:834–847. doi: 10.1016/j.ympev.2012.02.020. PubMed DOI
Castellana S, Vicario S, Saccone C. Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein-coding genes. Genome Biol Evol. 2011;3:1067–1079. doi: 10.1093/gbe/evr040. PubMed DOI PMC
Jacobsen MW, Da Fonseca RR, Bernatchez L, Hansen MM. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.) Mol Phylogenet Evol. 2016;95:161–170. doi: 10.1016/j.ympev.2015.11.008. PubMed DOI
Mallatt J, Craig CW, Yoder MJ. Nearly complete rRNA genes assembled from across the metazoan animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction. Mol Phylogenet Evol. 2010;55:1–17. doi: 10.1016/j.ympev.2009.09.028. PubMed DOI
Lockyer AE, Olson PD, Littlewood DTJ. Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biol J Linn Soc. 2003;78:155–171. doi: 10.1046/j.1095-8312.2003.00141.x. DOI
Nolan MJ, Cribb TH. The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Adv Parasit. 2005;60:101–163. doi: 10.1016/S0065-308X(05)60002-4. PubMed DOI
Olson PD, Littlewood DTJ. Phylogenetics of the Monogenea – evidence from a medley of molecules. Int J Parasitol. 2002;32:233–244. doi: 10.1016/S0020-7519(01)00328-9. PubMed DOI
Huyse T, Webster BL, Geldof S, Stothard JR, Diaw OT, Polman K, et al. Bidirectional introgressive hybridization between a cattle and human schistosome species. PLoS Pathog. 2009;5:e1000571. doi: 10.1371/journal.ppat.1000571. PubMed DOI PMC
Mendlová M, Desdevises Y, Civáňová K, Pariselle A, Šimková A. Monogeneans of west African cichlid fish: evolution and cophylogenetic interactions. PLoS One. 2012;7:e37268. doi: 10.1371/journal.pone.0037268. PubMed DOI PMC
Tang CQ, Leasi F, Obertegger U, Kieneke A, Barraclough TG, Fontaneto D. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. P Natl Acad Sci USA. 2012;109:16208–16212. doi: 10.1073/pnas.1209160109. PubMed DOI PMC
Vanhove MPM, Snoeks J, Volckaert FAM, Huyse T. First description of monogenean parasites in Lake Tanganyika: the cichlid Simochromis diagramma (Teleostei, Cichlidae) harbours a high diversity of Gyrodactylus species (Platyhelminthes, Monogenea) Parasitology. 2011;138:364–380. doi: 10.1017/S0031182010001356. PubMed DOI
Pouyaud L, Desmarais E, Deveney M, Pariselle A. Phylogenetic relationships among monogenean gill parasites (Dactylogyridea, Ancyrocephalidae) infesting tilapiine hosts (Cichlidae): systematic and evolutionary implications. Mol Phylogenet Evol. 2006;38:241–249. doi: 10.1016/j.ympev.2005.08.013. PubMed DOI
Šimková A, Plaisance L, Matějusová I, Morand S, Verneau O. Phylogenetic relationships of the Dactylogyridae Bychowsky, 1933 (Monogenea: Dactylogyridea): the need for the systematic revision of the Ancyrocephalinae Bychowsky, 1937. Syst Parasitol. 2003;54:1–11. doi: 10.1023/A:1022133608662. PubMed DOI
Šimková A, Matějusová I, Cunningham CO. A molecular phylogeny of the Dactylogyridae sensu Kritsky and Boeger (1989) (Monogenea) based on the D1-D3 domains of large subunit rDNA. Parasitology. 2006;133:43–54. doi: 10.1017/S0031182006009942. PubMed DOI
Blasco-Costa I, Míguez-Lozano R, Sarabeev V, Balbuena JA. Molecular phylogeny of species of Ligophorus (Monogenea: Dactylogyridae) and their affinities within the Dactylogyridae. Parasitol Int. 2012;61:619–627. doi: 10.1016/j.parint.2012.06.004. PubMed DOI
Pariselle A, Boeger WA, Snoeks J, Bilong Bilong CF, Morand S, Vanhove MPM. The monogenean parasite fauna of cichlids: a potential tool for host biogeography. Int J Evol Biol 2011;2011:471480. PubMed PMC
Rosa MT, Oliveira DS, Loreto EL. Characterization of the first mitochondrial genome of a catenulid flatworm: Stenostomum leucops (Platyhelminthes) J Zool Syst Evol Res. 2017;55:98–105. doi: 10.1111/jzs.12164. DOI
Zhang J, Wu X, Li Y, Zhao M, Xie M, Li A. The complete mitochondrial genome of Neobenedenia melleni (Platyhelminthes: Monogenea): mitochondrial gene content, arrangement and composition compared with two Benedenia species. Mol Biol Rep. 2014;41:6583–6589. doi: 10.1007/s11033-014-3542-6. PubMed DOI
Solà E, Álvarez-Presas M, Frías-López C, Littlewood DTJ, Rozas J, Riutort M. Evolutionary analysis of mitogenomes from parasitic and free-living flatworms. PLoS One. 2015;10:e0120081. doi: 10.1371/journal.pone.0120081. PubMed DOI PMC
Jorissen MWP, Pariselle A, Huyse T, Vreven EJ, Snoeks J, Volckaert FAM, et al. Diversity, endemicity and host-specificity of monogenean gill parasites (Platyhelminthes) of cichlids in the Bangweulu-Mweru ecoregion. J Helminthol. 2017; 10.1017/S0022149X17000712. PubMed
Muterezi Bukinga F, Vanhove MPM, Van Steenberge M, Pariselle A. Ancyrocephalidae (Monogenea) of Lake Tanganyika: III: Cichlidogyrus infecting the world’s biggest cichlid and the non-endemic tribes Haplochromini, Oreochromini and Tylochromini (Teleostei, Cichlidae) Parasitol Res. 2012;111:2049–2061. doi: 10.1007/s00436-012-3052-1. PubMed DOI
Lerssutthichawal T, Maneepitaksanti W, Purivirojkul W. Gill monogeneans of potentially cultured tilapias and first record of Cichlidogyrus mbirizei Bukinga et al., 2012, in Thailand. Walailak J Sci & Tech. 2016;13:543–553.
Lim S-Y, Ooi A-L, Wong W-L. Gill monogeneans of Nile tilapia (Oreochromis niloticus) and red hybrid tilapia (Oreochromis spp.) from the wild and fish farms in Perak, Malaysia: infection dynamics and spatial distribution. Springerplus. 2016;5:1609. doi: 10.1186/s40064-016-3266-2. PubMed DOI PMC
Maneepitaksanti W, Nagasawa K. Monogeneans of Cichlidogyrus Paperna, 1960 (Dactylogyridae), gill parasites of tilapias, from Okinawa prefecture. Japan Biogeography. 2012;14:111–119.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Briscoe AG, Hopkins KP, Waeschenbach A. High-throughput sequencing of complete mitochondrial genomes. In: Bourlat SJ, editor. Marine genomics. New York, NY: Humana Press; 2016. pp. 45–64. PubMed
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucl Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Laslett D, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172–175. doi: 10.1093/bioinformatics/btm573. PubMed DOI
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. doi: 10.1093/nar/25.5.0955. PubMed DOI PMC
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005;33:W540–W543. doi: 10.1093/nar/gki478. PubMed DOI PMC
Lohse M, Drechsel O, Kahlau S, Bock R. OrganellarGenomeDRA - a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41:W575–W581. doi: 10.1093/nar/gkt289. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008;9:212. doi: 10.1186/1471-2105-9-212. PubMed DOI PMC
Telford MJ, Herniou EA, Russell RB, Littlewood DTJ. Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. P Natl Acad Sci USA. 2000;97:11359–11364. doi: 10.1073/pnas.97.21.11359. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI
Philippe H, de Vienne D, Ranwez V, Roure B, Baurain D, Delsuc F. Pitfalls in supermatrix phylogenomics. Eur J Taxon. 2017;(283):1–25.
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;38:W7–13. doi: 10.1093/nar/gkq291. PubMed DOI PMC
Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. P Natl Acad Sci USA. 1997;94:6815–6819. doi: 10.1073/pnas.94.13.6815. PubMed DOI PMC
Schmidt HA, Strimmer K, Vingron M, von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002;18:502–504. doi: 10.1093/bioinformatics/18.3.502. PubMed DOI
Xia X. DAMBE6: new tools for microbial genomics, phylogenetics and molecular evolution. J Hered. 2017;108:431–437. doi: 10.1093/jhered/esx033. PubMed DOI PMC
Xia X. Assessing substitution saturation with DAMBE. Theory. In: Lemey P, Salemi M, Vandamme A-M, editors. The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge: Cambridge University Press; 2009. pp. 615–623.
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Yang ZPAML. 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–W612. doi: 10.1093/nar/gkl315. PubMed DOI PMC
Perkins EM, Donnellan SC, Bertozzi T, Whittington ID. Closing the mitochondrial circle on paraphyly of the Monogenea (Platyhelminthes) infers evolution in the diet of parasitic flatworms. Int J Parasitol. 2010;40:1237–1245. doi: 10.1016/j.ijpara.2010.02.017. PubMed DOI
Kang S, Kim J, Lee J, Kim S, Min GS, Park JK. The complete mitochondrial genome of an ectoparasitic monopisthocotylean fluke Benedenia hoshinai (Monogenea: Platyhelminthes) Mitochondr DNA. 2012;23:176–178. doi: 10.3109/19401736.2012.668900. PubMed DOI
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Meth. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008. doi: 10.1093/sysbio/syw037. PubMed DOI PMC
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7:457–472. doi: 10.1214/ss/1177011136. DOI
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12:335–337. doi: 10.1007/s13127-011-0056-0. DOI
Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada DALTER. Program-oriented conversion of DNA and protein alignments. Nucleic Acids Res. 2010;38:W14–W18. doi: 10.1093/nar/gkq321. PubMed DOI PMC
Massouh A, Schubert J, Yaneva-Roder L, Ulbricht-Jones ES, Zupok A, Johnson MTJ, et al. Spontaneous chloroplast mutants mostly occur by replication slippage and show a biased pattern in the plastome of Oenothera. Plant Cell. 2016;28:911–929. PubMed PMC
Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27:171–180. doi: 10.1111/j.1096-0031.2010.00329.x. PubMed DOI
Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, et al. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics. 2007;23:2957–2958. doi: 10.1093/bioinformatics/btm468. PubMed DOI