Whole-exome sequencing identifies rare genetic variations in German families with pulmonary sarcoidosis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
EXC 306
Deutsche Forschungsgemeinschaft
FI 1935/1-1
Deutsche Forschungsgemeinschaft
IGA_LF_2018_015
Univerzita Palackého v Olomouci
NV18-05-00134
NV18-05-00134
PubMed
30054724
DOI
10.1007/s00439-018-1915-y
PII: 10.1007/s00439-018-1915-y
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie MeSH
- exom * MeSH
- fenotyp MeSH
- genetická predispozice k nemoci * MeSH
- genetická variace * MeSH
- genetické markery * MeSH
- genotyp MeSH
- genové regulační sítě * MeSH
- lidé MeSH
- plicní sarkoidóza genetika patologie MeSH
- rodokmen MeSH
- sekvenční analýza DNA metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- genetické markery * MeSH
Genome-wide and candidate gene studies for pulmonary sarcoidosis have highlighted several candidate variants among different populations. However, the genetic basis of functional rare variants in sarcoidosis still needs to be explored. To identify functional rare variants in sarcoidosis, we sequenced exomes of 22 sarcoidosis cases from six families. Variants were prioritized using linkage and high-penetrance approaches, and filtered to identify novel and rare variants. Functional networking and pathway analysis of identified variants was performed using gene ontology based gene-phenotype, gene-gene, and protein-protein interactions. The linkage (n = 1007-7640) and high-penetrance (n = 11,432) prioritized variants were filtered to select variants with (a) reported allele frequency < 5% in databases (1.2-3.4%) or (b) novel (0.7-2.3%). Further selection based on functional properties and validation revealed a panel of 40 functional rare variants (33 from linkage region, 6 highly penetrant and 1 shared by both approaches). Functional network analysis implicated these gene variants in immune responses, such as regulation of pro-inflammatory cytokines including production of IFN-γ and anti-inflammatory cytokine IL-10, leukocyte proliferation, bacterial defence, and vesicle-mediated transport. The KEGG pathway analysis indicated inflammatory bowel disease as most relevant. This study highlights the subsets of functional rare gene variants involved in pulmonary sarcoidosis, such as, regulations of calcium ions, G-protein-coupled receptor, and immune system including retinoic acid binding. The implicated mechanisms in etiopathogenesis of familial sarcoidosis thus include Wnt signalling, inflammation mediated by chemokine and cytokine signalling and cadherin signalling pathways.
Clinic of Internal Medicine 1 University Hospital Schleswig Holstein Campus Kiel Kiel Germany
Department of Pneumology Medical Center Faculty of Medicine University of Freiburg Freiburg Germany
Institute of Clinical Molecular Biology Kiel University Kiel Germany
Zobrazit více v PubMed
Semin Respir Crit Care Med. 2010 Aug;31(4):474-84 PubMed
Respir Med. 2010 Apr;104(4):564-70 PubMed
Clin Rev Allergy Immunol. 2015 Aug;49(1):19-35 PubMed
Genome Biol. 2017 Apr 27;18(1):77 PubMed
Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):885-90 PubMed
Nat Methods. 2012 Mar 04;9(4):357-9 PubMed
Nat Protoc. 2015 Oct;10(10):1556-66 PubMed
Am J Hum Genet. 2010 Jun 11;86(6):832-8 PubMed
Nat Methods. 2015 Sep;12(9):841-3 PubMed
Sarcoidosis Vasc Diffuse Lung Dis. 2000 Oct;17(3):277-80 PubMed
Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 PubMed
Endocr Rev. 2016 Oct;37(5):521-547 PubMed
Am J Respir Crit Care Med. 2016 May 1;193(9):1008-22 PubMed
Front Immunol. 2015 Sep 22;6:476 PubMed
Respir Res. 2018 Mar 20;19(1):44 PubMed
Sarcoidosis Vasc Diffuse Lung Dis. 2013 Aug 01;30(2):113-20 PubMed
Lancet. 2014 Mar 29;383(9923):1155-67 PubMed
Genome Res. 2010 Sep;20(9):1297-303 PubMed
Am J Respir Crit Care Med. 1999 Aug;160(2):736-55 PubMed
Nat Rev Immunol. 2007 Sep;7(9):690-702 PubMed
PLoS One. 2012;7(2):e32518 PubMed
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E455-64 PubMed
J Transl Med. 2016 Apr 12;14:89 PubMed
Nat Rev Genet. 2012 Jan 18;13(2):135-45 PubMed
Am J Respir Crit Care Med. 2015 Sep 15;192(6):727-36 PubMed
BMC Med Genomics. 2018 Mar 6;11(1):23 PubMed
Clin Chest Med. 2015 Dec;36(4):569-84 PubMed
Respirology. 2018 Jun 29;:null PubMed
Chest. 2010 Jul;138(1):151-7 PubMed
Biochem Biophys Res Commun. 2003 Nov 28;311(4):1117-32 PubMed
Pharmacogenet Genomics. 2012 Aug;22(8):577-89 PubMed
Curr Opin Genet Dev. 2009 Jun;19(3):212-9 PubMed
Mediators Inflamm. 2015;2015:181986 PubMed
Am J Respir Crit Care Med. 2001 Dec 1;164(11):2085-91 PubMed
F1000Res. 2014 Jul 01;3:153 PubMed
Clin Rheumatol. 1992 Mar;11(1):28-36 PubMed
BMC Proc. 2016 Oct 18;10(Suppl 7):181-186 PubMed
Nat Rev Genet. 2015 May;16(5):275-84 PubMed
J Clin Invest. 2013 Oct;123(10):4255-63 PubMed
J Clin Endocrinol Metab. 1985 May;60(5):960-6 PubMed
Thorax. 2008 Oct;63(10):894-6 PubMed
Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189 PubMed
Int J Clin Exp Med. 2010 Aug 10;3(3):233-44 PubMed
Clin Rev Allergy Immunol. 2017 Oct;53(2):141-165 PubMed
Genes Immun. 2007 Jul;8(5):379-86 PubMed
Mol Immunol. 2014 Dec;62(2):339-43 PubMed
Clin Chest Med. 2008 Sep;29(3):391-414, viii PubMed
Am J Hum Genet. 2014 Jul 3;95(1):5-23 PubMed
Semin Respir Crit Care Med. 2014 Jun;35(3):296-306 PubMed
Expert Rev Clin Immunol. 2016 Nov;12(11):1191-1208 PubMed
Nat Protoc. 2009;4(1):44-57 PubMed
Microbes Infect. 2009 Apr;11(5):612-9 PubMed
Eur J Hum Genet. 2015 Apr;23(4):486-93 PubMed
Cell. 2009 Sep 4;138(5):947-60 PubMed