Chromosomes of Asian cyprinid fishes: cytogenetic analysis of two representatives of small paleotetraploid tribe Probarbini
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
30202442
PubMed Central
PMC6123905
DOI
10.1186/s13039-018-0399-8
PII: 399
Knihovny.cz E-resources
- Keywords
- Chromosomal markers, Cyprinidae, Fish cytogenetics, Microsatellites, rDNAs,
- Publication type
- Journal Article MeSH
BACKGROUND: Polyploidy, although still poorly explored, represents an important evolutionary event in several cyprinid clades. Herein, Catlocarpio siamensis and Probarbus jullieni - representatives of the paleotetraploid tribe Probarbini, were characterized both by conventional and molecular cytogenetic methods. RESULTS: Alike most other paleotetraploid cyprinids (with 2n = 100), both species studied here shared 2n = 98 but differed in karyotypes: C. siamensis displayed 18m + 34sm + 46st/a; NF = 150, while P. jullieni exhibited 26m + 14sm + 58st/a; NF = 138. Fluorescence in situ hybridization (FISH) with rDNA probes revealed two (5S) and eight (18S) signals in C. siamensis, respectively, and six signals for both probes in P. jullieni. FISH with microsatellite motifs evidenced substantial genomic divergence between both species. The almost doubled size of the chromosome pairs #1 in C. siamensis and #14 in P. jullieni compared to the rest of corresponding karyotypes indicated chromosomal fusions. CONCLUSION: Based on our findings, together with likely the same reduced 2n = 98 karyotypes in the remainder Probarbini species, we hypothesize that the karyotype 2n = 98 might represent a derived character, shared by all members of the Probarbini clade. Besides, we also witnessed considerable changes in the amount and distribution of certain repetitive DNA classes, suggesting complex post-polyploidization processes in this small paleotetraploid tribe.
Departamento de Genética e Evolução Universidade Federal de São Carlos São Carlos SP Brazil
Institute of Human Genetics Jena University Hospital Am Klinikum 1 D 07747 Jena Germany
Secretaria de Estado de Educação de Mato Grosso SEDUC MT Cuiabá MT Brazil
See more in PubMed
Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, et al. A new time-scale for ray-finned fish evolution. Proc R Soc London B Biol Sci. 2007;274:489–498. doi: 10.1098/rspb.2006.3749. PubMed DOI PMC
Braasch I, Postlethwait JH. Polyploidy in fish and the teleost genome duplication. In: Soltis PS, Soltis DE, editors. Polyploidy and genome evolution. Berlin: Springer; 2012. pp. 341–383.
Sallan LC. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol Rev. 2014;89:950–971. doi: 10.1111/brv.12086. PubMed DOI
Uyeno T, Smith GR. Tetraploid origin of the karyotype of catostomid fishes. Science. 1972;175:644–646. doi: 10.1126/science.175.4022.644. PubMed DOI
Saitoh K, Chen W-J, Mayden RL. Extensive hybridization and tetrapolyploidy in spined loach fish. Mol Phylogenet Evol. 2010;56:1001–1010. doi: 10.1016/j.ympev.2010.04.021. PubMed DOI
Alexandrou MA, Oliveira C, Maillard M, McGill RAR, Newton J, Creer S, et al. Competition and phylogeny determine community structure in Müllerian co-mimics. Nature. 2011;469:84. doi: 10.1038/nature09660. PubMed DOI
Marburger S, Alexandrou MA, Taggart JB, Creer S, Carvalho G, Oliveira C, et al. Whole genome duplication and transposable element proliferation drive genome expansion in Corydoradinae catfishes. Proc R Soc B. 2018;285:20172732. doi: 10.1098/rspb.2017.2732. PubMed DOI PMC
Macqueen DJ, Johnston IA. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B Biol Sci. 2014;281:20132881. doi: 10.1098/rspb.2013.2881. PubMed DOI PMC
Yang L, Sado T, Vincent Hirt M, Pasco-Viel E, Arunachalam M, Li J, et al. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes) Mol Phylogenet Evol. 2015;85:97–116. doi: 10.1016/j.ympev.2015.01.014. PubMed DOI
Schmidt RC, Bart HL., Jr Nomenclatural changes should not be based on equivocally supported phylogenies: reply to Yang et al. 2015. Mol Phylogenet Evol. 2015;90:193–194. doi: 10.1016/j.ympev.2015.05.025. PubMed DOI
Wang X, Gan X, Li J, Chen Y, He S. Cyprininae phylogeny revealed independent origins of the Tibetan plateau endemic polyploid cyprinids and their diversifications related to the Neogene uplift of the plateau. Sci China Life Sci. 2016;59:1149–1165. doi: 10.1007/s11427-016-0007-7. PubMed DOI
Smith HM. The freshwater fishes of Siam, or Thailand. Bull - United States Natl Museum. 1945;188:1–633.
Rainboth WJ. Fishes of the cambodian mekong. Rome: Food & Agriculture Org.; 1996.
Robert TR. Revision of the southeast Asian cyprinid fish genus Probarbus, with two new species threatened by proposed construction of dams on the Mekong River. Ichthyol Explor Freshwaters. 1992;3:37–48.
Hogan Z, Baird I. Probarbus jullieni. The IUCN Red List of Threatened Species. 2011. 10.2305/IUCN.UK.2011-1.RLTS.T18182A7742599.en. Accessed 6 Sep 2017.
Baird I. Probarbus labeamajor. The IUCN Red List of Threatened Species. 2011. 10.2305/IUCN.UK.2011-1.RLTS.T18183A7744836.en. Accessed 6 Sep 2017.
Baird I. Probarbus labeaminor. The IUCN Red List of Threatened Species 2012. 10.2305/IUCN.UK.2012-1.RLTS.T18184A1728617.en. Accessed 6 Sep 2017.
Hogan Z. Catlocarpio siamensis. The IUCN Red List of Threatened Species. 2011. 10.2305/IUCN.UK.2011-1.RLTS.T180662A7649359.en. Accessed 6 Sep 2017.
Arai R. Fish karyotypes: a check list. Tokio: Springer Science & Business Media; 2011.
Singh M, Kumar R, Nagpure NS, Kushwaha B, Gond I, Lakra WS. Chromosomal localization of 18s and 5s rDNA using FISH in the genus Tor (Pisces, Cyprinidae) Genetica. 2009;137:245–252. doi: 10.1007/s10709-009-9367-x. PubMed DOI
Mani I, Kumar R, Singh M, Nagpure NS, Kushwaha B, Srivastava PK, et al. Nucleotide variation and physical mapping of ribosomal genes using FISH in genus Tor (Pisces, Cyprinidae) Mol Biol Rep. 2011;38:2637–2647. doi: 10.1007/s11033-010-0405-7. PubMed DOI
Suzuki A, Taki Y. Chromosomes and DNA values of two cyprinid fishes of the subfamily Barbinae. Japanese J Ichthyol. 1986;32:459–462.
Suzuki A, Taki Y. Karyotype and DNA content in the cyprinid Catlocarpio siamensis. Japanese J Ichthyol. 1988;35:389–391.
Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. PubMed DOI
Le Comber SC, Smith C. Polyploidy in fishes: patterns and processes. Biol J Linn Soc. 2004;82:431–442. doi: 10.1111/j.1095-8312.2004.00330.x. DOI
Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis. J Zool. 2011;284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x. DOI
Glasauer SMK, Neuhauss SCF. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Gen Genomics. 2014;289:1045–1060. doi: 10.1007/s00438-014-0889-2. PubMed DOI
Ráb P, Collares-Pereira MJ. Chromosomes of European cyprinid fishes (Cyprinidae, Cypriniformes). A review. Folia Zool. 1995;44:193–214.
Spoz A, Boron A, Porycka K, Karolewska M, Ito D, Abe S, et al. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758)(Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes. Comp Cytogenet. 2014;8:233–248. doi: 10.3897/compcytogen.v8i3.7718. PubMed DOI PMC
Knytl M, Kalous L, Rylková K, Choleva L, Merilä J, Ráb P. Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: a threat for the threatened crucian carp, C. carassius, L. PLoS One. 2018;13:e0190924. doi: 10.1371/journal.pone.0190924. PubMed DOI PMC
Rishi KK, Singh J, Kaul MM. Chromosome analysis of Schizothoracichthys progastus (McCll) (Cypriniformes) Chromosom Inform Serv. 1983;34:12–13.
Rishi KK, Rishi S. Karyotype study on six Indian hill-stream fishes. Chromosom Sci. 1998;2:9–13.
Zan RG, Liu WG, Song Z. Tetraploid-hexaploid relationship in Schizothoracinae. Acta Genet Sin. 1985;12:137–142.
Mazik EJ, Toktosunovic A, Ráb P. Karyotype study of four species of the genus Diptychus (Pisces, Cyprinidae), with remarks on polyploidy of schizothoracine fishes. Folia Zool. 1989;38:325–332.
Ahmad F, Yousuf AR, Tripathi NK, Zargar UR. On the chromosomes of two cyprinid fishes of the subfamily Schizothoracinae from Kashmir. Nat Sci. 2011;9:53–61.
Yu X, Zhou T, Li K, Li Y, Zhou M. On the karyosystematics of cyprinid fishes and a summary of fish chromosome studies in China. Genetica. 1987;72:225–235. doi: 10.1007/BF00116227. DOI
Yu XJ, Zhou T, Li YC, Li K, Zhou M. Chromosomes of Chinese freshwater fishes. Beijing: Science Press; 1989.
Yu XY, Li YC, Zhou T. Karyotype studies of cyprinid fishes in China-comparative study of the karyotypes of 8 species of schizothoracine fishes. Wuhan Univ J Nat Sci. 1990;2:97–104.
He D, Chen Y, Chen Y, Chen Z. Molecular phylogeny of the specialized schizothoracine fishes (Teleostei: Cyprinidae), with their implications for the uplift of the Qinghai-Tibetan Plateau. Chin Sci Bull. 2004;49:39–48. doi: 10.1007/BF02901741. DOI
Yu XY, Yu XJ. A schizothoracine fish species, Diptychus dipogon, with a very high number of chromosomes. Chromosom Inf Serv. 1990;48:17–18.
Wolfe KH. Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet. 2001;2:333–341. doi: 10.1038/35072009. PubMed DOI
Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6:836–846. doi: 10.1038/nrg1711. PubMed DOI
Ma X-F, Gustafson JP. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res. 2005;109:236–249. doi: 10.1159/000082406. PubMed DOI
Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, et al. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae) Ann Bot. 2008;101:805–814. doi: 10.1093/aob/mcm326. PubMed DOI PMC
Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy. New Phytol. 2010;186:5–17. doi: 10.1111/j.1469-8137.2009.03142.x. PubMed DOI
Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity. 2013;110:99–104. doi: 10.1038/hdy.2012.79. PubMed DOI PMC
Tayalé A, Parisod C. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res. 2013;140:79–96. doi: 10.1159/000351318. PubMed DOI
Wertheim B, Beukeboom LW, Van de Zande L. Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. Cytogenet Genome Res. 2013;140:256–269. doi: 10.1159/000351998. PubMed DOI
Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: pitfalls and paths to a paradigm. Am J Bot. 2016;103:1146–1166. doi: 10.3732/ajb.1500501. PubMed DOI
Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS. In situ localization of parental genomes in a wide hybrid. Ann Bot. 1989;64:315–324. doi: 10.1093/oxfordjournals.aob.a087847. DOI
Leitch IJ, Bennett MD. Genome downsizing in polyploid plants. Biol J Linn Soc. 2004;82:651–663. doi: 10.1111/j.1095-8312.2004.00349.x. DOI
Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, et al. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol. 2010;186:37–45. doi: 10.1111/j.1469-8137.2009.03096.x. PubMed DOI
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation) Genes (Basel) 2010;1:166–192. doi: 10.3390/genes1020166. PubMed DOI PMC
Xiong Z, Pires JC. Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics. 2011;187:37–49. doi: 10.1534/genetics.110.122473. PubMed DOI PMC
Cuadrado Á, de Bustos A, Jouve N. On the allopolyploid origin and genome structure of the closely related species Hordeum secalinum and Hordeum capense inferred by molecular karyotyping. Ann Bot. 2017;120:245–255. PubMed PMC
Cioffi MB, Bertollo LAC. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido-Ramos MA, editor. Genome dynamics. Basel: Karger; 2012. pp. 197–221. PubMed
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res. 2013;141:90–102. doi: 10.1159/000354832. PubMed DOI
Maneechot N, Yano CF, Bertollo LAC, Getlekha N, Molina WF, Ditcharoen S, et al. Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes) Mol Cytogenet. 2016;9:4. doi: 10.1186/s13039-016-0215-2. PubMed DOI PMC
Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Biltueva LS, Prokopov DY, Makunin AI, Komissarov AS, Kudryavtseva AV, Lemskaya NA, et al. Genomic organization and physical mapping of tandemly arranged repetitive DNAs in sterlet (Acipenser ruthenus) Cytogenet Genome Res. 2017;152:148–157. doi: 10.1159/000479472. PubMed DOI
Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, et al. Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the north American paddlefish (Polyodon spathula) BMC Genet. 2017;18:19. doi: 10.1186/s12863-017-0484-8. PubMed DOI PMC
Gromicho M, Coutanceau J-P, Ozouf-Costaz C, Collares-Pereira MJ. Contrast between extensive variation of 28S rDNA and stability of 5S rDNA and telomeric repeats in the diploid-polyploid Squalius alburnoides complex and in its maternal ancestor Squalius pyrenaicus (Teleostei, Cyprinidae) Chromosom Res. 2006;14:297–306. doi: 10.1007/s10577-006-1047-4. PubMed DOI
Zhu H-P, Gui J-F. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture. 2007;265:109–117. doi: 10.1016/j.aquaculture.2006.10.026. DOI
Da Silva M, Matoso DA, Ludwig LAM, Gomes E, Almeida MC, Vicari MR, et al. Natural triploidy in Rhamdia quelen identified by cytogenetic monitoring in Iguaçu basin, southern Brazil. Environ Biol Fish. 2011;91:361–366. doi: 10.1007/s10641-011-9794-2. DOI
Zhang C, Ye L, Chen Y, Xiao J, Wu Y, Tao M, et al. The chromosomal constitution of fish hybrid lineage revealed by 5S rDNA FISH. BMC Genet. 2015;16:140. doi: 10.1186/s12863-015-0295-8. PubMed DOI PMC
Ribeiro LB, Moraes Neto A, Artoni RF, Matoso DA, Feldberg E. Chromosomal mapping of repetitive sequences (Rex3, Rex6, and rDNA Genes) in hybrids between Colossoma macropomum (Cuvier, 1818) and Piaractus mesopotamicus (Holmberg, 1887) Zebrafish. 2017;14:155–160. doi: 10.1089/zeb.2016.1378. PubMed DOI
Zhu HP, Ma DM, Gui JF. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosom Res. 2006;14:767–776. doi: 10.1007/s10577-006-1083-0. PubMed DOI
Li Y-J, Tian Y, Zhang M-Z, Tian P-P, Yu Z, Abe S, et al. Chromosome banding and FISH with rDNA probe in the diploid and tetraploid loach Misgurnus anguillicaudatus. Ichthyol Res. 2010;57:358–366. doi: 10.1007/s10228-010-0168-0. DOI
Qin Q, Wang J, Hu M, Huang S, Liu S. Autotriploid origin of Carassius auratus as revealed by chromosomal locus analysis. Sci China Life Sci. 2016;59:622–626. doi: 10.1007/s11427-016-5040-7. PubMed DOI
Eickbush TH, Eickbush DG. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics. 2007;175:477–485. doi: 10.1534/genetics.107.071399. PubMed DOI PMC
Feliner GN, Rosselló JA. Concerted evolution of multigene families and homoeologous recombination. In: Wendel JF, editor. Plant genome diversity volume 1. Vienna: Springer-Verlag; 2012. pp. 171–193.
Qin Q, He W, Liu S, Wang J, Xiao J, Liu Y. Analysis of 5S rDNA organization and variation in polyploid hybrids from crosses of different fish subfamilies. J Exp Zool Part B Mol Dev Evol. 2010;314:403–411. doi: 10.1002/jez.b.21346. PubMed DOI
He W, Qin Q, Liu S, Li T, Wang J, Xiao J, et al. Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp × topmouth culter. PLoS One. 2012;7:e38976. doi: 10.1371/journal.pone.0038976. PubMed DOI PMC
Huang P, Xiao A, Tong X, Lin S, Zhang B. Targeted mutagenesis in zebrafish by TALENs. In: Clifton NJ, editor. Methods in molecular biology. New Jersey: Human Press; 2016. pp. 191–206. PubMed
Ye L, Zhang C, Tang X, Chen Y, Liu S. Variations in 5S rDNAs in diploid and tetraploid offspring of red crucian carp × common carp. BMC Genet. 2017;18:75. doi: 10.1186/s12863-017-0542-2. PubMed DOI PMC
Fontdevila A. Hybrid genome evolution by transposition. Cytogenet Genome Res. 2005;110:49–55. doi: 10.1159/000084937. PubMed DOI
Volkov RA, Komarova NY, Hemleben V. Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst Biodivers. 2007;5:261–276. doi: 10.1017/S1477200007002447. DOI
Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, et al. Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot. 2008;101:815–823. doi: 10.1093/aob/mcn019. PubMed DOI PMC
Rebordinos L, Cross I, Merlo A. High evolutionary dynamism in 5S rDNA of fish: state of the art. Cytogenet Genome Res. 2013;141:103–113. doi: 10.1159/000354871. PubMed DOI
Zhang X, Eickbush MT, Eickbush TH. Role of recombination in the long-term retention of transposable elements in rRNA gene loci. Genetics. 2008;180:1617–1626. doi: 10.1534/genetics.108.093716. PubMed DOI PMC
Cioffi MB, Martins C, Bertollo LAC. Chromosome spreading of associated transposable elements and ribossomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol. 2010;10:271. doi: 10.1186/1471-2148-10-271. PubMed DOI PMC
Symonová R, Majtánová Z, Sember A, Staaks GBO, Bohlen J, Freyhof J. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress - activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol. 2013;13:42. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Singh M, Kumar R, Nagpure NS, Kushwaha B, Mani I, Chauhan UK, et al. Population distribution of 45S and 5S rDNA in golden mahseer, Tor putitora: population-specific FISH marker. J Genet. 2009;88:315–320. doi: 10.1007/s12041-009-0045-7. PubMed DOI
Singh M, Kumar R, Nagpure NS, Kushwaha B, Mani I, Lakra WS. Extensive NOR site polymorphism in geographically isolated populations of golden mahseer, Tor putitora. Genome. 2009;52:783–789. doi: 10.1139/G09-052. PubMed DOI
Pereira CSA, Aboim MA, Ráb P, Collares-Pereira MJ. Introgressive hybridization as a promoter of genome reshuffling in natural homoploid fish hybrids (Cyprinidae, Leuciscinae) Heredity. 2014;112:343–350. doi: 10.1038/hdy.2013.110. PubMed DOI PMC
Śliwińska-Jewsiewicka A, Kuciński M, Kirtiklis L, Dobosz S, Ocalewicz K, Jankun M. Chromosomal characteristics and distribution of rDNA sequences in the brook trout Salvelinus fontinalis (Mitchill, 1814) Genetica. 2015;143:425–432. doi: 10.1007/s10709-015-9841-6. PubMed DOI PMC
Collares-Pereira MJ, Ráb P. NOR polymorphism in the Iberian species Chondrostoma lusitanicum (Pisces: Cyprinidae)–re-examination by FISH. Genetica. 1999;105:301–303. doi: 10.1023/A:1003885922023. PubMed DOI
Libertini A, Sola L, Rampin M, Rossi AR, Iijima K, Ueda T. Classical and molecular cytogenetic characterization of allochthonous European bitterling Rhodeus amarus (Cyprinidae, Acheilognathinae) from northern Italy. Genes Genet Syst. 2008;83:417–422. doi: 10.1266/ggs.83.417. PubMed DOI
Pereira CSA, Ráb P, Collares-Pereira MJ. Chromosomes of European cyprinid fishes: comparative cytogenetics and chromosomal characteristics of ribosomal DNAs in nine Iberian chondrostomine species (Leuciscinae) Genetica. 2012;140:485–495. doi: 10.1007/s10709-013-9697-6. PubMed DOI
Rossi AR, Milana V, Hett AK, Tancioni L. Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes. Genetica. 2012;140:469–476. doi: 10.1007/s10709-012-9695-0. PubMed DOI
Li Y-J, Gao Y-C, Zhou H, Liu B, Gao M, Wang Y-S, et al. Molecular cytogenetic study of genome ploidy in the German mirror carp Cyprinus carpio. Fish Sci. 2014;80:963–968. doi: 10.1007/s12562-014-0774-2. DOI
Kumar R, Baisvar VS, Kushwaha B, Waikhom G, Nagpure NS. Cytogenetic investigation of Cyprinus carpio (Linnaeus, 1758) using giemsa, silver nitrate, CMA 3 staining and fluorescence in situ hybridization. Nucl. 2017;60:1–8. doi: 10.1007/s13237-016-0189-9. DOI
Inafuku J, Nabeyama M, Kikuma Y, Saitoh J, Kubota S, Kohno S. Chromosomal location and nucleotide sequences of 5S ribosomal DNA of two cyprinid species (Osteichthyes, Pisces) Chromosom Res. 2000;8:193–199. doi: 10.1023/A:1009292610618. PubMed DOI
Murakami M, Fujitani H. Characterization of repetitive DNA sequences carrying 5S rDNA of the triploid ginbuna (Japanese silver crucian carp, Carassius auratus langsdorfi) Genes Genet Syst. 1998;73:9–20. doi: 10.1266/ggs.73.9. PubMed DOI
Phillips RB, Reed KM. Localization of repetitive DNAs to zebrafish (Danio rerio) chromosomes by fluorescence in situ hybridization (FISH) Chromosom Res. 2000;8:27–35. doi: 10.1023/A:1009271017998. PubMed DOI
Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic acids Res Acids Res. 1984;12:4127–4138. doi: 10.1093/nar/12.10.4127. PubMed DOI PMC
Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–445. doi: 10.1038/nrg1348. PubMed DOI
Chistiakov DA, Hellemans B, Volckaert FAM. Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture. 2006;255:1–29. doi: 10.1016/j.aquaculture.2005.11.031. DOI
Yano CF, Bertollo LAC, Liehr T, Troy WP, Cioffi MDB. W chromosome dynamics in Triportheus species (Characiformes, Triportheidae): an ongoing process narrated by repetitive sequences. J Hered. 2016;107:342–348. doi: 10.1093/jhered/esw021. PubMed DOI PMC
Oliveira EA, Sember A, Bertollo LAC, Yano CF, Ezaz T, Moreira-Filho O, et al. Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes) Chromosoma. 2018;127:115–128. doi: 10.1007/s00412-017-0648-3. PubMed DOI
Cioffi MB, Kejnovsky E, Bertollo LAC. The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet Genome Res. 2011;132:289–296. doi: 10.1159/000322058. PubMed DOI
Xu D, Lou B, Bertollo LAC, Cioffi MDB. Chromosomal mapping of microsatellite repeats in the rock bream fish Oplegnathus fasciatus, with emphasis of their distribution in the neo-Y chromosome. Mol Cytogenet. 2013;6:12. doi: 10.1186/1755-8166-6-12. PubMed DOI PMC
Terencio ML, Schneider CH, Gross MC, Vicari MR, Farias IP, Passos KB, et al. Evolutionary dynamics of repetitive DNA in Semaprochilodus (Characiformes, Prochilodontidae): a fish model for sex chromosome differentiation. Sex Dev. 2013;7:325–333. doi: 10.1159/000356691. PubMed DOI
Yano CF, Poltronieri J, Bertollo LAC, Artoni RF, Liehr T, Cioffi MDB. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): insights into the differentiation of the Z and W chromosomes. PLoS One. 2014;9:e90946. doi: 10.1371/journal.pone.0090946. PubMed DOI PMC
Oliveira EA, Bertollo LAC, Yano CF, Liehr T, Cioffi MDB. Comparative cytogenetics in the genus Hoplias (Characiformes, Erythrinidae) highlights contrasting karyotype evolution among congeneric species. Mol Cytogenet. 2015;8:56. doi: 10.1186/s13039-015-0161-4. PubMed DOI PMC
Pucci MB, Barbosa P, Nogaroto V, Almeida MC, Artoni RF, Scacchetti PC, et al. Chromosomal spreading of microsatellites and (TTAGGG)n sequences in the Characidium zebra and C. gomesi genomes (Characiformes: Crenuchidae) Cytogenet Genome Res. 2016;149:182–190. doi: 10.1159/000447959. PubMed DOI
Piscor D, Parise-Maltempi PP. Microsatellite organization in the B chromosome and a chromosome complement in Astyanax (Characiformes, Characidae) species. Cytogenet Genome Res. 2016;148:44–51. doi: 10.1159/000444728. PubMed DOI
Bertollo LAC, Cioffi MB, Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C, Pisano E, Foresti F, Almeida Toledo LF, editors. Fish cytogenetic techniques. Enfield USA: CRC Press; 2015. pp. 21–26.
Sumner AT. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Pendás AM, Móran P, Freije JP, Garcia-Vásquez E. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet Cell Genet. 1994;67:31–36. doi: 10.1159/000133792. PubMed DOI
Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC. Chromosomal variability among allopatric populations of erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet Genome Res. 2009;125:132–141. doi: 10.1159/000227838. PubMed DOI
Yano CF, Bertollo LAC, Cioffi MB. FISH-FISH: molecular cytogenetics in fish species. In: Liehr T, editor. Fluorescence in situ hybridization (FISH) - application guide. 2. Berlin: Springer; 2017. pp. 429–443.
Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI
Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI