Cellulase-Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
LM2015055
Ministry of Education, Youth and Sports of the Czech Republic
1160302
Fondo Nacional de Desarrollo Científico y Tecnológico
PubMed
30209585
DOI
10.1007/s00248-018-1251-8
PII: 10.1007/s00248-018-1251-8
Knihovny.cz E-resources
- Keywords
- Algerian soils, Bacterial community, Cellulases, Decomposition, Hemicellulases, Lignocellulose,
- MeSH
- Bacteria classification enzymology genetics isolation & purification MeSH
- Bacterial Proteins genetics metabolism MeSH
- Cellulase genetics metabolism MeSH
- Ecosystem MeSH
- Phylogeny MeSH
- Glycoside Hydrolases genetics metabolism MeSH
- Forests MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Algeria MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Cellulase MeSH
- Glycoside Hydrolases MeSH
- hemicellulase MeSH Browser
- Soil MeSH
Soil microorganisms are important mediators of carbon cycling in nature. Although cellulose- and hemicellulose-degrading bacteria have been isolated from Algerian ecosystems, the information on the composition of soil bacterial communities and thus the potential of their members to decompose plant residues is still limited. The objective of the present study was to describe and compare the bacterial community composition in Algerian soils (crop, forest, garden, and desert) and the activity of cellulose- and hemicellulose-degrading enzymes. Bacterial communities were characterized by high-throughput 16S amplicon sequencing followed by the in silico prediction of their functional potential. The highest lignocellulolytic activity was recorded in forest and garden soils whereas activities in the agricultural and desert soils were typically low. The bacterial phyla Proteobacteria (in particular classes α-proteobacteria, δ-proteobacteria, and γ-proteobacteria), Firmicutes, and Actinobacteria dominated in all soils. Forest and garden soils exhibited higher diversity than agricultural and desert soils. Endocellulase activity was elevated in forest and garden soils. In silico analysis predicted higher share of genes assigned to general metabolism in forest and garden soils compared with agricultural and arid soils, particularly in carbohydrate metabolism. The highest potential of lignocellulose decomposition was predicted for forest soils, which is in agreement with the highest activity of corresponding enzymes.
See more in PubMed
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31 PubMed
Appl Environ Microbiol. 2006 Mar;72(3):1719-28 PubMed
Appl Environ Microbiol. 2006 Jul;72(7):5069-72 PubMed
Appl Environ Microbiol. 2008 May;74(9):2902-7 PubMed
Appl Environ Microbiol. 2009 Aug;75(15):5111-20 PubMed
BMC Microbiol. 2010 Mar 29;10:94 PubMed
Nat Methods. 2010 May;7(5):335-6 PubMed
ISME J. 2010 Oct;4(10):1340-51 PubMed
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 PubMed
Bioinformatics. 2010 Oct 1;26(19):2460-1 PubMed
Plant Physiol. 2011 Feb;155(2):932-43 PubMed
PLoS One. 2011 Feb 16;6(2):e17000 PubMed
Biotechnol Lett. 2012 Apr;34(4):663-75 PubMed
ISME J. 2012 Aug;6(8):1621-4 PubMed
Microb Ecol. 2012 Nov;64(4):1008-17 PubMed
Appl Environ Microbiol. 2013 Jan;79(1):263-72 PubMed
Syst Appl Microbiol. 2013 Mar;36(2):137-44 PubMed
Biotechnol Biofuels. 2013 Feb 20;6(1):27 PubMed
PLoS One. 2013 Apr 22;8(4):e61217 PubMed
PLoS One. 2013 Apr 24;8(4):e61928 PubMed
PLoS One. 2013 Jul 19;8(7):e68465 PubMed
Nat Biotechnol. 2013 Sep;31(9):814-21 PubMed
Bioinformatics. 2014 Mar 1;30(5):614-20 PubMed
J Microbiol Biotechnol. 2014 Mar 28;24(3):313-23 PubMed
Microbiome. 2013 Nov 20;1(1):28 PubMed
PLoS One. 2014 Feb 13;9(2):e89108 PubMed
Curr Opin Biotechnol. 2014 Jun;27:15-20 PubMed
Front Microbiol. 2014 Jun 02;5:263 PubMed
Biotechnol Biofuels. 2014 Jun 12;7:92 PubMed
Microb Biotechnol. 2014 Sep;7(5):424-33 PubMed
Biomolecules. 2013 Aug 23;3(3):597-611 PubMed
Biomolecules. 2014 Jan 16;4(1):117-39 PubMed
Bioinformatics. 2014 Nov 1;30(21):3123-4 PubMed
J Environ Health Sci Eng. 2015 Feb 25;13:12 PubMed
PLoS One. 2015 Apr 30;10(4):e0127608 PubMed
Sci Rep. 2015 May 06;5:10007 PubMed
Environ Microbiol. 2016 Jun;18(6):1875-88 PubMed
Carbohydr Res. 2016 Jan;419:60-8 PubMed
PLoS One. 2016 Apr 05;11(4):e0152894 PubMed
Sci Rep. 2016 Apr 29;6:25279 PubMed
Biotechnol Biofuels. 2016 May 14;9:104 PubMed
Microb Ecol. 2016 Oct;72(3):633-46 PubMed
Front Microbiol. 2016 Aug 25;7:1341 PubMed
PLoS One. 2016 Dec 9;11(12):e0167216 PubMed
Sci Rep. 2016 Dec 12;6:38915 PubMed
World J Microbiol Biotechnol. 2017 Feb;33(2):29 PubMed
Appl Environ Microbiol. 2017 Mar 2;83(6): PubMed
Appl Environ Microbiol. 2017 Apr 17;83(9): PubMed
Sci Rep. 2017 Mar 23;7(1):343 PubMed
Microbiol Mol Biol Rev. 2017 Apr 12;81(2): PubMed
Sci Rep. 2017 May 24;7(1):2356 PubMed
Front Microbiol. 2017 Jul 14;8:1346 PubMed
Nat Rev Microbiol. 2017 Oct;15(10):579-590 PubMed
Sci Rep. 2017 Aug 21;7(1):8373 PubMed
Microbiome. 2017 Sep 18;5(1):122 PubMed
FEMS Microbiol Rev. 2017 Sep 1;41(5):599-623 PubMed
Bioresour Technol. 2018 Feb;249:527-535 PubMed