Seasonal dynamics of canine antibody response to Phlebotomus perniciosus saliva in an endemic area of Leishmania infantum
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
642609
H2020 Marie Skłodowska-Curie Actions
PubMed
30309376
PubMed Central
PMC6182812
DOI
10.1186/s13071-018-3123-y
PII: 10.1186/s13071-018-3123-y
Knihovny.cz E-resources
- Keywords
- Canine leishmaniosis, Longitudinal study, Markers of exposure, North-east Spain, Phlebotomus perniciosus, Saliva proteins,
- MeSH
- Endemic Diseases veterinary MeSH
- Insect Vectors parasitology MeSH
- Immunity, Humoral MeSH
- Immunoglobulin G analysis MeSH
- Leishmania infantum isolation & purification MeSH
- Leishmaniasis blood parasitology veterinary MeSH
- Longitudinal Studies MeSH
- Dog Diseases diagnosis immunology parasitology MeSH
- Phlebotomus immunology MeSH
- Antibodies, Protozoan blood MeSH
- Antibodies blood MeSH
- Dogs immunology parasitology MeSH
- Seasons MeSH
- Salivary Proteins and Peptides immunology MeSH
- Salivary Glands chemistry parasitology MeSH
- Saliva immunology microbiology parasitology MeSH
- Animals MeSH
- Check Tag
- Dogs immunology parasitology MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Spain epidemiology MeSH
- Names of Substances
- Immunoglobulin G MeSH
- Antibodies, Protozoan MeSH
- Antibodies MeSH
- Salivary Proteins and Peptides MeSH
BACKGROUND: Canine leishmaniosis (CanL) is an important zoonotic parasitic disease, endemic in the Mediterranean basin. In this region, transmission of Leishmania infantum, the etiological agent of CanL, is through the bite of phlebotomine sand flies. Therefore, monitoring host-vector contact represents an important epidemiological tool, and could be used to assess the effectiveness of vector-control programmes in endemic areas. Previous studies have shown that canine antibodies against the saliva of phlebotomine sand flies are specific markers of exposure to Leishmania vectors. However, this method needs to be further validated in natural heterogeneous dog populations living in CanL endemic areas. METHODS: In this study, 176 dogs living in 12 different locations of an L. infantum endemic area in north-east Spain were followed for 14 months. Blood samples were taken at 5 pre-determined time points (February, August and October 2016; January and April 2017) to assess the canine humoral immune response to whole salivary gland homogenate (SGH) and to the single salivary 43 kDa yellow-related recombinant protein (rSP03B) of Phlebotomus perniciosus, a proven vector of L. infantum naturally present in this region. Simultaneously, in all dogs, L. infantum infection status was assessed by serology. The relationship between anti-SGH and anti-rSP03B antibodies with the sampling month, L. infantum infection and the location was tested by fitting multilevel linear regression models. RESULTS: The dynamics of canine anti-saliva IgG for both SGH and rSP03B followed the expected trends of P. perniciosus activity in the region. Statistically significant associations were detected for both salivary antigens between vector exposure and sampling month or dog seropositivity to L. infantum. The correlation between canine antibodies against SGH and rSP03B was moderate. CONCLUSIONS: Our results confirm the frequent presence of CanL vectors in the study area in Spain and support the applicability of SGH- and rSP03B-based ELISA tests to study canine exposure to P. perniciosus in L. infantum endemic areas.
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Hospital Veterinari Canis Girona Spain
ISGlobal Hospital Clínic Universitat de Barcelona Barcelona Spain
See more in PubMed
WHO Expert Committee on the Control of the Leishmaniases & World Health Organization. Control of the leishmaniases: report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases, Geneva, 22-26 March 2010. Geneva: World Health Organization. http://www.who.int/iris/handle/10665/44412. Accessed 15 Mar 2018
Dantas-Torres F. Canine leishmaniosis in South America. Parasit Vectors. 2009;2(Suppl. 1):S1. doi: 10.1186/1756-3305-2-S1-S1. PubMed DOI PMC
Gállego M. Zoonosis emergentes por patógenos parásitos: las leishmaniosis. Rev Sci Tech. (OIE). 2004;23:661–676. doi: 10.20506/rst.23.2.1512. PubMed DOI
Franco AO, Davies CR, Mylne A, Dedet J-P, Gállego M, Ballart C, et al. Predicting the distribution of canine leishmaniasis in western Europe based on environmental variables. Parasitology. 2011;138:1878–1891. doi: 10.1017/S003118201100148X. PubMed DOI
Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Ferrer L. Canine leishmaniosis - new concepts and insights on an expanding zoonosis: Part one. Trends Parasitol. 2008;24:325–330. doi: 10.1016/j.pt.2008.04.001. PubMed DOI
Borja LS, de Sousa OMF, Solcà MDS, Bastos LA, Bordoni M, Magalhães JT, et al. Parasite load in the blood and skin of dogs naturally infected by Leishmania infantum is correlated with their capacity to infect sand fly vectors. Vet Parasitol. 2016;229:110–117. doi: 10.1016/j.vetpar.2016.10.004. PubMed DOI
Molina R, Amela C, Nieto J, San-Andrés M, González F, Castillo JA, et al. Infectivity of dogs naturally infected with Leishmania infantum to colonized Phlebotomus perniciosus. Trans R Soc Trop Med Hyg. 1994;88:491–493. doi: 10.1016/0035-9203(94)90446-4. PubMed DOI
Alten B, Maia C, Afonso MO, Campino L, Jiménez M, González E, et al. Seasonal dynamics of phlebotomine sand fly species proven vectors of Mediterranean leishmaniasis caused by Leishmania infantum. PLoS Negl Trop Dis. 2016;10:e0004458. doi: 10.1371/journal.pntd.0004458. PubMed DOI PMC
Rioux JA, Guilvard E, Gállego J, Moreno G, Pratlong F, Portús M, et al. Intervention simultanée de Phlebotomus ariasi Tonnoir, 1921 et P. perniciosus Newstead, 1911 dans un même foyer. Infestations par deux zymodemes syntopiques. A propos d’une enquête en Catalogne (Espagne). In: Leishmania: Taxonomie et Phylogenèse Applications Éco-épidémiologiques. Montpellier: IMEEE; 1986. p. 439–44.
Guilvard E., Gallego M., Moreno G., Fisa R., Rispail P., Pratlong F., Martinez-Ortega E., Gallego J., Rioux J.A. Infestation naturelle dePhlebotomus ariasietPhlebotomus perniciosus(Diptera-Psychodidae) parLeishmania infantum(Kinetoplastida-Trypanosomatidae) en Catalogne (Espagne) Parasite. 1996;3(2):191–192. doi: 10.1051/parasite/1996032191. DOI
Ballart C, Guerrero I, Castells X, Barón S, Castillejo S, Alcover MM, et al. Importance of individual analysis of environmental and climatic factors affecting the density of Leishmania vectors living in the same geographical area: the example of Phlebotomus ariasi and P. perniciosus in northeast Spain. Geospat Health. 2014;8:389–403. doi: 10.4081/gh.2014.28. PubMed DOI
Aransay AM, Testa JM, Morillas-Marquez F, Lucientes J, Ready PD. Distribution of sandfly species in relation to canine leishmaniasis from the Ebro Valley to Valencia, northeastern Spain. Parasitol Res. 2004;94:416–420. doi: 10.1007/s00436-004-1231-4. PubMed DOI
Sáez VD, Morillas-Márquez F, Merino-Espinosa G, Corpas-López V, Morales-Yuste M, Pesson B, et al. Phlebotomus langeroni Nitzulescu (Diptera, Psychodidae) a new vector for Leishmania infantum in Europe. Parasitol Res. 2018;117:1105–1113. doi: 10.1007/s00436-018-5788-8. PubMed DOI
Rohousova I, Ozensoy S, Ozbel Y, Volf P. Detection of species-specific antibody response of humans and mice bitten by sand flies. Parasitology. 2005;130:493–499. doi: 10.1017/S003118200400681X. PubMed DOI
Vlkova M, Rohousova I, Drahota J, Stanneck D, Kruedewagen EM, Mencke N, et al. Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission. PLoS Negl Trop Dis. 2011;5:e1344. doi: 10.1371/journal.pntd.0001344. PubMed DOI PMC
Martín-Martín I, Molina R, Rohoušová I, Drahota J, Volf P, Jiménez M. High levels of anti-Phlebotomus perniciosus saliva antibodies in different vertebrate hosts from the re-emerging leishmaniosis focus in Madrid, Spain. Vet Parasitol. 2014;202:207–216. doi: 10.1016/j.vetpar.2014.02.045. PubMed DOI
Kostalova T, Lestinova T, Sumova P, Vlkova M, Rohousova I, Berriatua E, et al. Canine antibodies against salivary recombinant proteins of Phlebotomus perniciosus: a longitudinal study in an endemic focus of canine leishmaniasis. PLoS Negl Trop Dis. 2015;9:e0003855. doi: 10.1371/journal.pntd.0003855. PubMed DOI PMC
Marzouki S, Ben Ahmed M, Boussoffara T, Abdeladhim M, Ben Aleya-Bouafif N, Namane A, et al. Characterization of the antibody response to the saliva of Phlebotomus papatasi in people living in endemic areas of cutaneous leishmaniasis. Am J Trop Med Hyg. 2011;84:653–661. doi: 10.4269/ajtmh.2011.10-0598. PubMed DOI PMC
Carvalho AM, Cristal JR, Muniz AC, Carvalho LP, Gomes R, Miranda JC, et al. Interleukin 10-dominant immune response and increased risk of cutaneous leishmaniasis after natural exposure to Lutzomyia intermedia sand flies. J Infect Dis. 2015;212:157–165. doi: 10.1093/infdis/jiv020. PubMed DOI PMC
Gidwani K, Picado A, Rijal S, Singh SP, Roy L, Volfova V, et al. Serological markers of sand fly exposure to evaluate insecticidal nets against visceral leishmaniasis in India and Nepal: a cluster-randomized trial. PLoS Negl Trop Dis. 2011;5:e1296. doi: 10.1371/journal.pntd.0001296. PubMed DOI PMC
Clements Meredith F., Kumar Vijay, Rijal Suman, Rogers Matthew E., Hostomska Jitka, Boelaert Marleen, Sundar Shyam, Gidwani Kamlesh, Hamilton Gordon, Das Pradeep, Picado Albert, Davies Clive R., Das Murari, Dinesh Diwakar S., Kumar Rajiv, Müller Ingrid, Volfova Vera, Volf Petr. Measurement of Recent Exposure to Phlebotomus argentipes, the Vector of Indian Visceral Leishmaniasis, by Using Human Antibody Responses to Sand Fly Saliva. The American Journal of Tropical Medicine and Hygiene. 2010;82(5):801–807. doi: 10.4269/ajtmh.2010.09-0336. PubMed DOI PMC
Volf P, Rohoušova I. Species-specific antigens in salivary glands of phlebotomine sandflies. Parasitology. 2001;122:37–41. doi: 10.1017/S0031182000007046. PubMed DOI
Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11:e0005600. doi: 10.1371/journal.pntd.0005600. PubMed DOI PMC
Lestinova T, Vlkova M, Votypka J, Volf P, Rohousova I. Phlebotomus papatasi exposure cross-protects mice against Leishmania major co-inoculated with Phlebotomus duboscqi salivary gland homogenate. Acta Trop. 2015;144:9–18. doi: 10.1016/j.actatropica.2015.01.005. PubMed DOI
Drahota J, Martin-Martin I, Sumova P, Rohousova I, Jimenez M, Molina R, et al. Recombinant antigens from Phlebotomus perniciosus saliva as markers of canine exposure to visceral leishmaniases vector. PLoS Negl Trop Dis. 2014;8:e2597. doi: 10.1371/journal.pntd.0002597. PubMed DOI PMC
Kostalova T, Lestinova T, Maia C, Sumova P, Vlkova M, Willen L, et al. The recombinant protein rSP03B is a valid antigen for screening dog exposure to Phlebotomus perniciosus across foci of canine leishmaniasis. Med Vet Entomol. 2016;31:88–93. doi: 10.1111/mve.12192. PubMed DOI
Hostomska J, Rohousova I, Volfova V, Stanneck D, Mencke N, Volf P. Kinetics of canine antibody response to saliva of the sand fly Lutzomyia longipalpis. Vector Borne Zoonotic Dis. 2008;8:443–450. doi: 10.1089/vbz.2007.0214. PubMed DOI
Sima M, Ferencova B, Warburg A, Rohousova I, Volf P. Recombinant salivary proteins of Phlebotomus orientalis are suitable antigens to measure exposure of domestic animals to sand fly bites. PLoS Negl Trop Dis. 2016;10:e0004553. doi: 10.1371/journal.pntd.0004553. PubMed DOI PMC
Rohousova I, Talmi-Frank D, Kostalova T, Polanska N, Lestinova T, Kassahun A, et al. Exposure to Leishmania spp. and sand flies in domestic animals in northwestern Ethiopia. Parasit Vectors. 2015;8:360. doi: 10.1186/s13071-015-0976-1. PubMed DOI PMC
Morillas Marquez F, Guevara Benitez DC, Ubeda Ontiveros JM, Gonzalez Castro J. Fluctuations annuelles des populations de Phlébotomes (Diptera, Phlebotomidae) dans la province de Grenade (Espagne) Ann Parasitol Hum Comp. 1983;58:625–632. doi: 10.1051/parasite/1983586625. PubMed DOI
Gálvez R., Descalzo M.A., Miró G., Jiménez M.I., Martín O., Dos Santos-Brandao F., Guerrero I., Cubero E., Molina R. Seasonal trends and spatial relations between environmental/meteorological factors and leishmaniosis sand fly vector abundances in Central Spain. Acta Tropica. 2010;115(1-2):95–102. doi: 10.1016/j.actatropica.2010.02.009. PubMed DOI
González E, Jiménez M, Hernández S, Martín-Martín I, Molina R. Phlebotomine sand fly survey in the focus of leishmaniasis in Madrid, Spain (2012–2014): seasonal dynamics, Leishmania infantum infection rates and blood meal preferences. Parasit Vectors. 2017;10:368. PubMed PMC
Lladró S, Picado A, Ballart C, Portús M, Gállego M. Management, prevention and treatment of canine leishmaniosis in north-eastern Spain: an online questionnaire-based survey in the province of Girona with special emphasis on new preventive methods (CaniLeish vaccine and domperidone) Vet Rec. 2017;180:47. doi: 10.1136/vr.103653. PubMed DOI
Quinnell RJ, Soremekun S, Bates PA, Rogers ME, Garcez LM, Courtenay O. Antibody response to sand fly saliva is a marker of transmission intensity but not disease progression in dogs naturally infected with Leishmania infantum. Parasit Vectors. 2018;11:7. doi: 10.1186/s13071-017-2587-5. PubMed DOI PMC
Marzouki S, Kammoun-Rebai W, Bettaieb J, Abdeladhim M, Hadj Kacem S, Abdelkader R. Validation of recombinant salivary protein PpSP32 as a suitable marker of human exposure to Phlebotomus papatasi, the vector of Leishmania major in Tunisia. PLoS Negl Trop Dis. 2015;9:e0003991. doi: 10.1371/journal.pntd.0003991. PubMed DOI PMC
Souza AP, Andrade BB, Aquino D, Entringer P, Miranda JC, Alcantara R, et al. Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral leishmaniasis endemic areas. PLoS Negl Trop Dis. 2010;4:e649. doi: 10.1371/journal.pntd.0000649. PubMed DOI PMC
Anderson JM, Oliveira F, Kamhawi S, Mans BJ, Reynoso D, Seitz AE, et al. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics. 2006;7:52. doi: 10.1186/1471-2164-7-52. PubMed DOI PMC
Kedzierski L, Evans KJ. Immune responses during cutaneous and visceral leishmaniasis. Parasitology. 2014;141:1544–1562. doi: 10.1017/S003118201400095X. PubMed DOI
Andrade BB, Teixeira CR. Biomarkers for exposure to sand flies bites as tools to aid control of leishmaniasis. Front Immunol. 2012;3:121. doi: 10.3389/fimmu.2012.00121. PubMed DOI PMC
Kamhawi S. Protection Against Cutaneous Leishmaniasis Resulting from Bites of Uninfected Sand Flies. Science. 2000;290(5495):1351–1354. doi: 10.1126/science.290.5495.1351. PubMed DOI
Rohoušová I, Hostomská J, Vlková M, Kobets T, Lipoldová M, Volf P. The protective effect against Leishmania infection conferred by sand fly bites is limited to short-term exposure. Int J Parasitol. 2011;41:481–485. doi: 10.1016/j.ijpara.2011.01.003. PubMed DOI
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36:S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Sanchez J, Dohoo IR, Markham F, Leslie K, Conboy G. Evaluation of the repeatability of a crude adult indirect Ostertagia ostertagi ELISA and methods of expressing test results. Vet Parasitol. 2002;109:75–90. doi: 10.1016/S0304-4017(02)00194-2. PubMed DOI
Ballart C, Alcover MM, Picado A, Nieto J, Castillejo S, Portús M, et al. First survey on canine leishmaniasis in a non classical area of the disease in Spain (Lleida, Catalonia) based on a veterinary questionnaire and a cross-sectional study. Prev Vet Med. 2013;109:116–127. doi: 10.1016/j.prevetmed.2012.09.003. PubMed DOI
Riera C, Valladares JE, Gállego M, Aisa MJ, Castillejo S, Fisa R, et al. Serological and parasitological follow-up in dogs experimentally infected with Leishmania infantum and treated with meglumine antimoniate. Vet Parasitol. 1999;84:33–47. doi: 10.1016/S0304-4017(99)00084-9. PubMed DOI
Field study of the improved rapid sand fly exposure test in areas endemic for canine leishmaniasis