Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
30355641
PubMed Central
PMC6484683
DOI
10.1136/thoraxjnl-2018-211767
PII: thoraxjnl-2018-211767
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial infection, clinical epidemiology,
- MeSH
- incidence MeSH
- lidé MeSH
- následné studie MeSH
- pneumokokové vakcíny farmakologie MeSH
- retrospektivní studie MeSH
- senioři MeSH
- séroskupina MeSH
- Streptococcus pneumoniae imunologie MeSH
- vakcinace metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Názvy látek
- 10-valent pneumococcal conjugate vaccine MeSH Prohlížeč
- pneumokokové vakcíny MeSH
BACKGROUND: Pneumococcal conjugate vaccines (PCVs) have the potential to prevent pneumococcal disease through direct and indirect protection. This multicentre European study estimated the indirect effects of 5-year childhood PCV10 and/or PCV13 programmes on invasive pneumococcal disease (IPD) in older adults across 13 sites in 10 European countries, to support decision-making on pneumococcal vaccination policies. METHODS: For each site we calculated IPD incidence rate ratios (IRR) in people aged ≥65 years by serotype for each PCV10/13 year (2011-2015) compared with 2009 (pre-PCV10/13). We calculated pooled IRR and 95% CI using random-effects meta-analysis and PCV10/13 effect as (1 - IRR)*100. RESULTS: After five PCV10/13 years, the incidence of IPD caused by all types, PCV7 and additional PCV13 serotypes declined 9% (95% CI -4% to 19%), 77% (95% CI 67% to 84%) and 38% (95% CI 19% to 53%), respectively, while the incidence of non-PCV13 serotypes increased 63% (95% CI 39% to 91%). The incidence of serotypes included in PCV13 and not in PCV10 decreased 37% (95% CI 22% to 50%) in six PCV13 sites and increased by 50% (95% CI -8% to 146%) in the four sites using PCV10 (alone or with PCV13). In 2015, PCV13 serotypes represented 20-29% and 32-53% of IPD cases in PCV13 and PCV10 sites, respectively. CONCLUSION: Overall IPD incidence in older adults decreased moderately after five childhood PCV10/13 years in 13 European sites. Large declines in PCV10/13 serotype IPD, due to the indirect effect of childhood vaccination, were countered by increases in non-PCV13 IPD, but these declines varied according to the childhood vaccine used. Decision-making on pneumococcal vaccination for older adults must consider the indirect effects of childhood PCV programmes. Sustained monitoring of IPD epidemiology is imperative.
Antwerp University Antwerp Belgium
CIBER Epidemiología y Salud Pública Madrid Spain
Department of Clinical Microbiology Karolinska University Hospital Stockholm Sweden
Department of Microbiology Tumor and Cell Biology Karolinska Institutet Stockholm Sweden
European Centre for Disease Prevention and Control Stockholm Sweden
General Directorate of Public Health Madrid Spain
Health Protection Scotland National Services Scotland Glasgow UK
Health Protection Surveillance Centre Dublin Ireland
Instituto de Salud Pública de Navarra IdiSNA Pamplona Spain
Irish Pneumococcal Reference Laboratory Temple Street Children's University Hospital Dublin Ireland
National Centre for Pneumococci European Hospital George Pompidou Paris France
National Institute for Health and Welfare Helsinki Finland
National Institute for Public Health and the Environment Bilthoven The Netherlands
National Institute of Public Health Prague Czech Republic
Norwegian Institute of Public Health Oslo Norway
Public Health Agency of Catalunya Barcelona Spain
Public Health Agency of Sweden Solna Sweden
Public Health England London UK
Santé publique France Saint Maurice France
Scottish Haemophilus Legionella Meningococcus and Pneumococcus Reference Laboratory Glasgow UK
doi: 10.1136/thoraxjnl-2018-212585 PubMed
Zobrazit více v PubMed
Ardanuy C, Marimón JM, Calatayud L, et al. . Epidemiology of invasive pneumococcal disease in older people in Spain (2007-2009): implications for future vaccination strategies. PLoS One 2012;7:e43619 10.1371/journal.pone.0043619 PubMed DOI PMC
Verhaegen J, Flamaing J, De Backer W, et al. . Epidemiology and outcome of invasive pneumococcal disease among adults in Belgium, 2009-2011. Euro Surveill 2014;19:14–22. 10.2807/1560-7917.ES2014.19.31.20869 PubMed DOI
Reinert RR, Haupts S, van der Linden M, et al. . Invasive pneumococcal disease in adults in North-Rhine Westphalia, Germany, 2001-2003. Clin Microbiol Infect 2005;11:985–91. 10.1111/j.1469-0691.2005.01282.x PubMed DOI
Drijkoningen JJ, Rohde GG. Pneumococcal infection in adults: burden of disease. Clin Microbiol Infect 2014;20(Suppl 5):45–51. 10.1111/1469-0691.12461 PubMed DOI
Naucler P, Galanis I, Morfeldt E, et al. . Comparison of the impact of pneumococcal conjugate vaccine 10 or pneumococcal conjugate vaccine 13 on invasive pneumococcal disease in equivalent populations. Clin Infect Dis 2017;65:1780–9. 10.1093/cid/cix685 PubMed DOI PMC
Torres A, Bonanni P, Hryniewicz W, et al. . Pneumococcal vaccination: what have we learnt so far and what can we expect in the future? Eur J Clin Microbiol Infect Dis 2015;34:19–31. 10.1007/s10096-014-2208-6 PubMed DOI PMC
European Medicines Agency (EMA). European Public Assessment Report (EPAR) for Prevenar 13. ANNEX I. Summary of product characteristics London: EMA, 2015.
Guevara M, Ezpeleta C, Gil-Setas A, et al. . Reduced incidence of invasive pneumococcal disease after introduction of the 13-valent conjugate vaccine in Navarre, Spain, 2001-2013. Vaccine 2014;32:2553–62. 10.1016/j.vaccine.2014.03.054 PubMed DOI
Galanis I, Lindstrand A, Darenberg J, et al. . Effects of PCV7 and PCV13 on invasive pneumococcal disease and carriage in Stockholm, Sweden. Eur Respir J 2016;47:1208–18. 10.1183/13993003.01451-2015 PubMed DOI PMC
Waight PA, Andrews NJ, Ladhani SN, et al. . Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis 2015;15:535–43. 10.1016/S1473-3099(15)70044-7 PubMed DOI
Harboe ZB, Dalby T, Weinberger DM, et al. . Impact of 13-valent pneumococcal conjugate vaccination in invasive pneumococcal disease incidence and mortality. Clin Infect Dis 2014;59:1066–73. 10.1093/cid/ciu524 PubMed DOI
Moore MR, Link-Gelles R, Schaffner W, et al. . Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis 2015;15:301–9. 10.1016/S1473-3099(14)71081-3 PubMed DOI PMC
Falkenhorst G, Remschmidt C, Harder T, et al. . Effectiveness of the 23-valent pneumococcal polysaccharide vaccine (PPV23) against pneumococcal disease in the elderly: systematic review and meta-analysis. PLoS One 2017;12:e0169368 10.1371/journal.pone.0169368 PubMed DOI PMC
Moberley S, Holden J, Tatham DP, et al. . Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev 2013;1:CD000422 10.1002/14651858.CD000422.pub3 PubMed DOI PMC
European Commission. COMMISSION IMPLEMENTING DECISION of 8 August 2012 amending Decision 2002/253/EC laying down case definitions for reporting communicable diseases to the Community network under Decision No 2119/98/EC of the European Parliament and of the Council. 2012/506/EU. Official Journal of the European Union 2012.
Halloran ME, Struchiner CJ, Longini IM. Study designs for evaluating different efficacy and effectiveness aspects of vaccines. Am J Epidemiol 1997;146:789–803. 10.1093/oxfordjournals.aje.a009196 PubMed DOI
Hanquet G, Valenciano M, Simondon F, et al. . Vaccine effects and impact of vaccination programmes in post-licensure studies. Vaccine 2013;31:5634–42. 10.1016/j.vaccine.2013.07.006 PubMed DOI
Stock NK, Maly M, Sebestova H, et al. . The Czech surveillance system for invasive pneumococcal disease, 2008-2013: a follow-up assessment and sensitivity estimation. PLoS One 2015;10:e0131117 10.1371/journal.pone.0131117 PubMed DOI PMC
Lepoutre A, Varon E, Georges S, et al. . Impact of the pneumococcal conjugate vaccines on invasive pneumococcal disease in France, 2001-2012. Vaccine 2015;33:359–66. 10.1016/j.vaccine.2014.11.011 PubMed DOI
Dorléans F, Mølbak F, Voldstedlund M, et al. . Evaluating the completeness of the invasive pneumococcal diseases surveillance system in Denmark, 2010–2011. European Scientific Conference on Applied Infectious Disease Epidemiology (ESCAIDE). Stockholm: ECDC, 2013.
Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011;342:d549 10.1136/bmj.d549 PubMed DOI
Rücker G, Schwarzer G, Carpenter JR, et al. . Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol 2008;8:79 10.1186/1471-2288-8-79 PubMed DOI PMC
Shiri T, Datta S, Madan J, et al. . Indirect effects of childhood pneumococcal conjugate vaccination on invasive pneumococcal disease: a systematic review and meta-analysis. Lancet Glob Health 2017;5:e51–e59. 10.1016/S2214-109X(16)30306-0 PubMed DOI
D’Ancona F, Caporali MG, Del Manso M, et al. . Invasive pneumococcal disease in children and adults in seven Italian regions after the introduction of the conjugate vaccine, 2008-2014. Epidemiol Prev 2015;39(4 Suppl 1):134–8. PubMed
van der Linden M, Falkenhorst G, Perniciaro S, et al. . Effects of infant pneumococcal conjugate vaccination on serotype distribution in invasive pneumococcal disease among children and adults in Germany. PLoS One 2015;10:e0131494 10.1371/journal.pone.0131494 PubMed DOI PMC
Miller E, Andrews NJ, Waight PA, et al. . Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect Dis 2011;11:760–8. 10.1016/S1473-3099(11)70090-1 PubMed DOI
Grijalva CG, Moore MR, Griffin MR. Assessing the effect of pneumococcal conjugate vaccines: what is the value of routinely collected surveillance data? Lancet Infect Dis 2011;11:724–6. 10.1016/S1473-3099(11)70143-8 PubMed DOI
Principi N, Esposito S. The impact of 10-valent and 13-valent pneumococcal conjugate vaccines on serotype 19A invasive pneumococcal disease. Expert Rev Vaccines 2015;14:1359–66. 10.1586/14760584.2015.1075884 PubMed DOI
Verani JR, Domingues CM, de Moraes JC, et al. . Indirect cohort analysis of 10-valent pneumococcal conjugate vaccine effectiveness against vaccine-type and vaccine-related invasive pneumococcal disease. Vaccine 2015;33:6145–8. 10.1016/j.vaccine.2015.10.007 PubMed DOI PMC
Bosch A, van Houten MA, Bruin JP, et al. . Nasopharyngeal carriage of Streptococcus pneumoniae and other bacteria in the 7th year after implementation of the pneumococcal conjugate vaccine in the Netherlands. Vaccine 2016;34:531–9. 10.1016/j.vaccine.2015.11.060 PubMed DOI
Steens A, Vestrheim DF, de Blasio BF. Pneumococcal vaccination in older adults in the era of childhood vaccination: public health insights from a Norwegian statistical prediction study. Epidemics 2015;11:24–31. 10.1016/j.epidem.2015.01.001 PubMed DOI
Corcoran M, Vickers I, Mereckiene J, et al. . The epidemiology of invasive pneumococcal disease in older adults in the post-PCV era. Has there been a herd effect? Epidemiol Infect 2017;145:2390–9. 10.1017/S0950268817001194 PubMed DOI PMC
Houseman C, Hughes GJ, Chapman KE, et al. . Increased invasive pneumococcal disease, North East England, UK. Emerg Infect Dis 2017;23:122–6. 10.3201/eid2301.160897 PubMed DOI PMC
Ladhani SN, Collins S, Djennad A, et al. . Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000-17: a prospective national observational cohort study. Lancet Infect Dis 2018;18:441–51. 10.1016/S1473-3099(18)30052-5 PubMed DOI
Henriques Normark B, Kalin M, Ortqvist A, et al. . Dynamics of penicillin-susceptible clones in invasive pneumococcal disease. J Infect Dis 2001;184:861–9. 10.1086/323339 PubMed DOI
Harboe ZB, Benfield TL, Valentiner-Branth P, et al. . Temporal trends in invasive pneumococcal disease and pneumococcal serotypes over 7 decades. Clin Infect Dis 2010;50:329–37. 10.1086/649872 PubMed DOI
Pedersen MK, Høiby EA, Frøholm LO, et al. . Systemic pneumococcal disease in Norway 1995-2001: capsular serotypes and antimicrobial resistance. Epidemiol Infect 2004;132:167–75. 10.1017/S0950268803001511 PubMed DOI PMC
Spanjaard L, van der Ende A, Rümke H, et al. . Epidemiology of meningitis and bacteraemia due to Streptococcus pneumoniae in The Netherlands. Acta Paediatr Suppl 2000;89:22–6. 10.1111/j.1651-2227.2000.tb00778.x PubMed DOI
Vestrheim DF, Høiby EA, Bergsaker MR, et al. . Indirect effect of conjugate pneumococcal vaccination in a 2+1 dose schedule. Vaccine 2010;28:2214–21. 10.1016/j.vaccine.2009.12.054 PubMed DOI
Moore CE, Paul J, Foster D, et al. . Reduction of invasive pneumococcal disease 3 years after the introduction of the 13-valent conjugate vaccine in the Oxfordshire region of England. J Infect Dis 2014;210:1001–11. 10.1093/infdis/jiu213 PubMed DOI
Flasche S, Slack M, Miller E. Long term trends introduce a potential bias when evaluating the impact of the pneumococcal conjugate vaccination programme in England and Wales. Euro Surveill 2011;16:19868. PubMed