Distinct characteristics of Tregs of newborns of healthy and allergic mothers
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30475891
PubMed Central
PMC6258229
DOI
10.1371/journal.pone.0207998
PII: PONE-D-18-06265
Knihovny.cz E-resources
- MeSH
- Hypersensitivity blood immunology MeSH
- Cytokines blood MeSH
- Fetal Blood immunology MeSH
- Immunoglobulin E blood MeSH
- Humans MeSH
- Mothers MeSH
- Disease Susceptibility blood immunology MeSH
- Infant, Newborn MeSH
- T-Lymphocytes, Regulatory immunology MeSH
- Risk MeSH
- Check Tag
- Humans MeSH
- Infant, Newborn MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytokines MeSH
- Immunoglobulin E MeSH
Allergic diseases represent a major issue in clinical and experimental immunology due to their high and increasing incidence worldwide. Allergy status of the mother remains the best predictor of an individual's increased risk of allergy development. Dysregulation of the balance between different branches of immune response, chiefly excessive polarization towards Th2, is the underlying cause of allergic diseases. Regulatory T cells (Tregs) play a pivotal role in the timely establishment of physiological immune polarization and are crucial for control of allergy. In our study we used flow cytometry to assess Tregs in cord blood of newborns of healthy (n = 121) and allergic (n = 108) mothers. We observed a higher percentage of Tregs (CD4+CD25+CD127lowFoxP3+) in cord blood of children of allergic mothers. However, the percentage of cells expressing extracellular (PD-1, CTLA-4, GITR) and intracellular (IL-10, TGF-β) markers of function was lower (significantly for PD-1 and IL-10) within Tregs of these children. Furthermore, Helios- induced Tregs in the cord blood of children of allergic mothers were decreased. These results were supported by a decrease in plasma levels of IL-10 and TGF-β in cord blood of newborns of allergic mothers, implying lower tolerogenic capacity on the systemic level. Taken together, these findings reflect deficient function of Tregs in the group with higher risk of allergy development. This may be caused by a lower maturation status of the immune system, specifically Tregs, at birth. Such immaturity may represent an important mechanism involved in the increased risk of allergy in children of allergic mothers.
See more in PubMed
Sykes L, MacIntyre DA, Yap XJ, Teoh TG, Bennett PR. The Th1:th2 dichotomy of pregnancy and preterm labour. Mediators Inflamm. 2012;2012:967629 10.1155/2012/967629 PubMed DOI PMC
Jutel M, Akdis CA. T-cell Subset Regulation in Atopy. Curr Allergy Asthma Rep. 2011. April;11(2):139–45. 10.1007/s11882-011-0178-7 PubMed DOI PMC
Steinborn A, Engst M, Haensch GM, Mahnke K, Schmitt E, Meuer S, et al. Small for gestational age (SGA) neonates show reduced suppressive activity of their regulatory T cells. Clin Immunol Orlando Fla. 2010. February;134(2):188–97. PubMed
Bacchetta R, Passerini L, Gambineri E, Dai M, Allan SE, Perroni L, et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest. 2006. June;116(6):1713–22. 10.1172/JCI25112 PubMed DOI PMC
Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy. J Allergy Clin Immunol. 2011. January;127(1):18–27; quiz 28–9. 10.1016/j.jaci.2010.11.030 PubMed DOI
Shevach EM. Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression. Immunity. 2009. May;30(5):636–45. 10.1016/j.immuni.2009.04.010 PubMed DOI
Hrdý J, Kocourková I, Prokešová L. Impaired function of regulatory T cells in cord blood of children of allergic mothers: Tregs in cord blood and allergy risk. Clin Exp Immunol. 2012. October;170(1):10–7. 10.1111/j.1365-2249.2012.04630.x PubMed DOI PMC
Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev. 2014. May;259(1):88–102. 10.1111/imr.12160 PubMed DOI PMC
Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol Baltim Md 1950. 2010. April 1;184(7):3433–41. PubMed PMC
Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015. January 14;5:7767 10.1038/srep07767 PubMed DOI PMC
Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012. September 24;209(10):1723–42, S1. 10.1084/jem.20120914 PubMed DOI PMC
Chen W, Jin W, Hardegen N, Lei K-J, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003. December 15;198(12):1875–86. 10.1084/jem.20030152 PubMed DOI PMC
Prescott SL, King B, Strong TL, Holt PG. The value of perinatal immune responses in predicting allergic disease at 6 years of age. Allergy. 2003. November;58(11):1187–94. PubMed
Peters JL, Cohen S, Staudenmayer J, Hosen J, Platts-Mills TAE, Wright RJ. Prenatal negative life events increases cord blood IgE: interactions with dust mite allergen and maternal atopy. Allergy. 2012. April;67(4):545–51. 10.1111/j.1398-9995.2012.02791.x PubMed DOI PMC
Prokesová L, Novotná O, Janatková I, Zanvit P, Zizka J, Lodinová-Zádníková R, et al. IgE against food and respiratory allergens in healthy and allergic mothers and their children. Folia Microbiol (Praha). 2008;53(1):67–72. PubMed
Chung EK, Miller RL, Wilson MT, McGeady SJ, Culhane JF. Antenatal risk factors, cytokines and the development of atopic disease in early childhood. Arch Dis Child—Fetal Neonatal Ed. 2007. January 1;92(1):F68–73. 10.1136/adc.2006.106492 PubMed DOI PMC
Hrdý J, Zanvit P, Novotná O, Kocourková I, Žižka J, Prokešová L. Cytokine expression in cord blood cells of children of healthy and allergic mothers. Folia Microbiol (Praha). 2010. September;55(5):515–9. PubMed
Rindsjö E, Joerink M, Johansson C, Bremme K, Malmström V, Scheynius A. Maternal allergic disease does not affect the phenotype of T and B cells or the immune response to allergens in neonates: No effect of maternal allergy on neonatal lymphocytes. Allergy. 2009. November 23;65(7):822–30. 10.1111/j.1398-9995.2009.02266.x PubMed DOI
Schaub B, Liu J, Höppler S, Schleich I, Huehn J, Olek S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol. 2009. April;123(4):774–782.e5. 10.1016/j.jaci.2009.01.056 PubMed DOI
Schröder PC, Casaca VI, Illi S, Schieck M, Michel S, Böck A, et al. IL-33 polymorphisms are associated with increased risk of hay fever and reduced regulatory T cells in a birth cohort. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2016. November;27(7):687–95. PubMed
Meng S, Gao R, Yan B, Ren J, Wu F, Chen P, et al. Maternal allergic disease history affects childhood allergy development through impairment of neonatal regulatory T-cells. Respir Res [Internet]. 2016. December [cited 2017 Jan 31];17(1). Available from: http://respiratory-research.biomedcentral.com/articles/10.1186/s12931-016-0430-8 PubMed DOI PMC
Hrdý J, Kocourková I, Lodinová-Žádníková R, Kolářová L, Prokešová L. The effect of a probiotic Escherichia coli strain on regulatory T-cells in six year-old children. Benef Microbes. 2016. November 30;7(5):639–48. 10.3920/BM2016.0030 PubMed DOI
Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol Baltim Md 1950. 2007. January 1;178(1):320–9. PubMed
Strauss L, Czystowska M, Szajnik M, Mandapathil M, Whiteside TL. Differential Responses of Human Regulatory T Cells (Treg) and Effector T Cells to Rapamycin. Unutmaz D, editor. PLoS ONE. 2009. June 22;4(6):e5994 10.1371/journal.pone.0005994 PubMed DOI PMC
Lodinová-Žádníková R, Prokešová L, Kocourková I, Hrdý J, Žižka J. Prevention of Allergy in Infants of Allergic Mothers by Probiotic Escherichia coli. Int Arch Allergy Immunol. 2010;153(2):201–6. 10.1159/000312638 PubMed DOI
Bundhoo A, Paveglio S, Rafti E, Dhongade A, Blumberg RS, Matson AP. Evidence that FcRn mediates the transplacental passage of maternal IgE in the form of IgG anti-IgE/IgE immune complexes. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2015. June;45(6):1085–98. PubMed PMC
Schaub B, Liu J, Schleich I, Höppler S, Sattler C, von Mutius E. Impairment of T helper and T regulatory cell responses at birth. Allergy. 2008. November;63(11):1438–47. 10.1111/j.1398-9995.2008.01685.x PubMed DOI
Strömbeck A, Rabe H, Lundell A-C, Andersson K, Johansen S, Adlerberth I, et al. High proportions of FOXP3 + CD25 high T cells in neonates are positively associated with allergic sensitization later in childhood. Clin Exp Allergy. 2014. July;44(7):940–52. 10.1111/cea.12290 PubMed DOI PMC
McLoughlin RM, Calatroni A, Visness CM, Wallace PK, Cruikshank WW, Tuzova M, et al. Longitudinal relationship of early life immunomodulatory T cell phenotype and function to development of allergic sensitization in an urban cohort. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2012. March;42(3):392–404. PubMed PMC
Fu Y, Lou H, Wang C, Lou W, Wang Y, Zheng T, et al. T cell subsets in cord blood are influenced by maternal allergy and associated with atopic dermatitis. Pediatr Allergy Immunol. 2013. March;24(2):178–86. 10.1111/pai.12050 PubMed DOI
Hinz D, Bauer M, Röder S, Olek S, Huehn J, Sack U, et al. Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year. Allergy. 2012. March;67(3):380–9. 10.1111/j.1398-9995.2011.02767.x PubMed DOI
Law JP, Hirschkorn DF, Owen RE, Biswas HH, Norris PJ, Lanteri MC. The importance of Foxp3 antibody and fixation/permeabilization buffer combinations in identifying CD4+CD25+Foxp3+ regulatory T cells. Cytom Part J Int Soc Anal Cytol. 2009. December;75(12):1040–50. PubMed PMC
Kmieciak M, Gowda M, Graham L, Godder K, Bear HD, Marincola FM, et al. Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. J Transl Med. 2009;7(1):89. PubMed PMC
Roncador G, Brown PJ, Maestre L, Hue S, Martínez-Torrecuadrada JL, Ling K-L, et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol. 2005. June;35(6):1681–91. 10.1002/eji.200526189 PubMed DOI
Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol. 2007. February 20;19(4):345–54. 10.1093/intimm/dxm014 PubMed DOI
Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J. 2015. December;8(1):1–12. 10.1186/1939-4551-8-1 PubMed DOI PMC
Zizka J, Hrdý J, Lodinová-Zádníková R, Kocourková I, Novotná O, Sterzl I, et al. Effect of breast milk of healthy and allergic mothers on in vitro stimulation of cord blood lymphocytes. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2007. September;18(6):486–494. PubMed
Kitagawa Y, Ohkura N, Sakaguchi S. Epigenetic control of thymic Treg-cell development. Eur J Immunol. 2015. January;45(1):11–6. 10.1002/eji.201444577 PubMed DOI
Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 2011. February;11(2):119–30. 10.1038/nri2916 PubMed DOI PMC
Wing JB, Sakaguchi S. Multiple treg suppressive modules and their adaptability. Front Immunol. 2012;3:178 10.3389/fimmu.2012.00178 PubMed DOI PMC
Gottschalk RA, Corse E, Allison JP. Expression of Helios in peripherally induced Foxp3+ regulatory T cells. J Immunol Baltim Md 1950. 2012. February 1;188(3):976–80. PubMed
Szurek E, Cebula A, Wojciech L, Pietrzak M, Rempala G, Kisielow P, et al. Differences in Expression Level of Helios and Neuropilin-1 Do Not Distinguish Thymus-Derived from Extrathymically-Induced CD4+Foxp3+ Regulatory T Cells. PloS One. 2015;10(10):e0141161 10.1371/journal.pone.0141161 PubMed DOI PMC
Akimova T, Beier UH, Wang L, Levine MH, Hancock WW. Helios expression is a marker of T cell activation and proliferation. PloS One. 2011;6(8):e24226 10.1371/journal.pone.0024226 PubMed DOI PMC
Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK. Helios+ and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J Immunol Baltim Md 1950. 2013. March 1;190(5):2001–8. PubMed
Zizka J, Hrdý J, Lodinová-Zádníková R, Kocourková I, Novotná O, Sterzl I, et al. Effect of breast milk of healthy and allergic mothers on in vitro stimulation of cord blood lymphocytes. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2007. September;18(6):486–94. PubMed
Hrdý J, Novotná O, Kocourková I, Prokešová L. Cytokine expression in the colostral cells of healthy and allergic mothers. Folia Microbiol (Praha). 2012. May;57(3):215–9. PubMed
Súkeníková L, Černý V, Novotná O, Petrásková P, Boráková K, Kolářová L, et al. Different capacity of in vitro generated myeloid dendritic cells of newborns of healthy and allergic mothers to respond to probiotic strain E. coli O83:K24:H31. Immunol Lett. 2017. September;189:82–9. 10.1016/j.imlet.2017.05.013 PubMed DOI
Kim H-J, Barnitz RA, Kreslavsky T, Brown FD, Moffett H, Lemieux ME, et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science. 2015. October 16;350(6258):334–9. 10.1126/science.aad0616 PubMed DOI PMC
Delgoffe GM, Woo S-R, Turnis ME, Gravano DM, Guy C, Overacre AE, et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature. 2013. September 12;501(7466):252–6. 10.1038/nature12428 PubMed DOI PMC
Battaglia A, Buzzonetti A, Monego G, Peri L, Ferrandina G, Fanfani F, et al. Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology. 2008. January;123(1):129–38. 10.1111/j.1365-2567.2007.02737.x PubMed DOI PMC
Chen L. Co-inhibitory molecules of the B7/CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004. May;4(5):336–47. 10.1038/nri1349 PubMed DOI
Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008. August;224:166–82. 10.1111/j.1600-065X.2008.00662.x PubMed DOI
Watanabe N, Nakajima H. Coinhibitory molecules in autoimmune diseases. Clin Dev Immunol. 2012;2012:269756 10.1155/2012/269756 PubMed DOI PMC
McAlees JW, Lajoie S, Dienger K, Sproles AA, Richgels PK, Yang Y, et al. Differential control of CD4 + T-cell subsets by the PD-1/PD-L1 axis in a mouse model of allergic asthma: Cellular immune response. Eur J Immunol. 2015. April;45(4):1019–29. 10.1002/eji.201444778 PubMed DOI PMC
Kumar S, Verma AK, Das M, Dwivedi PD. A molecular insight of CTLA-4 in food allergy. Immunol Lett. 2013. January;149(1–2):101–9. 10.1016/j.imlet.2012.12.003 PubMed DOI
Munthe-Kaas MC, Carlsen KH, Helms PJ, Gerritsen J, Whyte M, Feijen M, et al. CTLA-4 polymorphisms in allergy and asthma and the TH1/ TH2 paradigm. J Allergy Clin Immunol. 2004. August;114(2):280–7. 10.1016/j.jaci.2004.03.050 PubMed DOI
McGee HS, Yagita H, Shao Z, Agrawal DK. Programmed Death-1 antibody blocks therapeutic effects of T-regulatory cells in cockroach antigen-induced allergic asthma. Am J Respir Cell Mol Biol. 2010. October;43(4):432–42. 10.1165/rcmb.2009-0258OC PubMed DOI PMC
Ito A, Kondo S, Tada K, Kitano S. Clinical Development of Immune Checkpoint Inhibitors. BioMed Res Int. 2015;2015:605478 10.1155/2015/605478 PubMed DOI PMC
Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer Oxf Engl 1990. 2016. February;54:139–48. PubMed
Ronchetti S, Ricci E, Petrillo MG, Cari L, Migliorati G, Nocentini G, et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res. 2015;2015:171520 10.1155/2015/171520 PubMed DOI PMC
Nocentini G, Riccardi C. GITR: a modulator of immune response and inflammation. Adv Exp Med Biol. 2009;647:156–73. 10.1007/978-0-387-89520-8_11 PubMed DOI
Palomares O, Martín-Fontecha M, Lauener R, Traidl-Hoffmann C, Cavkaytar O, Akdis M, et al. Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes Immun. 2014. December;15(8):511–20. 10.1038/gene.2014.45 PubMed DOI
Ray A, Khare A, Krishnamoorthy N, Qi Z, Ray P. Regulatory T cells in many flavors control asthma. Mucosal Immunol. 2010. May;3(3):216–29. 10.1038/mi.2010.4 PubMed DOI PMC
Smaldini PL, Orsini Delgado ML, Fossati CA, Docena GH. Orally-Induced Intestinal CD4+ CD25+ FoxP3+ Treg Controlled Undesired Responses towards Oral Antigens and Effectively Dampened Food Allergic Reactions. PloS One. 2015;10(10):e0141116 10.1371/journal.pone.0141116 PubMed DOI PMC
Edwards JP, Hand TW, Morais da Fonseca D, Glass DD, Belkaid Y, Shevach EM. The GARP/Latent TGF-β1 complex on Treg cells modulates the induction of peripherally derived Treg cells during oral tolerance. Eur J Immunol. 2016. June;46(6):1480–9. 10.1002/eji.201546204 PubMed DOI PMC
Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012. February 8;482(7385):395–9. 10.1038/nature10772 PubMed DOI PMC
Konkel JE, Chen W. Balancing acts: the role of TGF-β in the mucosal immune system. Trends Mol Med. 2011. November;17(11):668–76. 10.1016/j.molmed.2011.07.002 PubMed DOI PMC
Konkel JE, Zhang D, Zanvit P, Chia C, Zangarle-Murray T, Jin W, et al. Transforming Growth Factor-β Signaling in Regulatory T Cells Controls T Helper-17 Cells and Tissue-Specific Immune Responses. Immunity. 2017. April 18;46(4):660–74. 10.1016/j.immuni.2017.03.015 PubMed DOI
Zizka J, Hrdý J, Lodinová-Zádníková R, Kocourková I, Novotná O, Sterzl I, et al. Effect of breast milk of healthy and allergic mothers on in vitro stimulation of cord blood lymphocytes. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2007. September;18(6):486–94. PubMed