Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30755709
PubMed Central
PMC6372629
DOI
10.1038/s41598-019-38557-z
PII: 10.1038/s41598-019-38557-z
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Nanotechnologies allow the production of yarns containing nanofibres for use in composites, membranes and biomedical materials. Composite yarns with a conventional thread core for mechanical strength and a nanofibrous envelope for functionality, e.g. biological, catalytic, have many advantages. Until now, the production of such yarns has been technologically difficult. Here, we show an approach to composite yarn production whereby a plume of nanofibers generated by high throughput AC needleless and collectorless electrospinning is wound around a classic thread. In the resulting yarn, nanofibres can form up to 80% of its weight. Our yarn production speed was 10 m/min; testing showed this can be increased to 60 m/min. After the yarn was embedded into knitwear, scanning electron microscope images revealed an intact nanofibrous envelope of the composite yarn. Our results indicate that this production method could lead to the widespread production and use of composite nanofibrous yarns on an industrial scale.
Technical University of Liberec Faculty of Mechanical Engineering Liberec 46117 Czech Republic
Technical University of Liberec Faculty of Textile Engineering Liberec 46117 Czech Republic
See more in PubMed
Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17:R89–R106. doi: 10.1088/0957-4484/17/14/R01. PubMed DOI
Formhals A. Method and apparatus for spinning. US patent. 1944;2(349):950.
Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology. 2001;12(3):384–390. doi: 10.1088/0957-4484/12/3/329. DOI
Ko F, et al. Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns. Advanced Materials. 2003;15(14):1161–5. doi: 10.1002/adma.200304955. DOI
Dalton PD, Klee D, Mãller M. Electrospinning with dual collection rings. Polymer. 2005;46:611–614. doi: 10.1016/j.polymer.2004.11.075. DOI
Ali U, Zhou Y, Wang X, Lin T. Direct electrospinning of highly twisted, continuous nanofiber yarns. Journal of the Textile Institute. 2012;103:80–88. doi: 10.1080/00405000.2011.552254. DOI
Jirsak O, Sanetrink F, Chaloupek J. Nanofiber-covered yarns. Chemical Fibers International. 2011;62:84–85.
Yalcinkaya F, Komarek M, Lubasova D, Sanetrnik F, Maryska J. Preparation of Antibacterial Nanofibre/Nanoparticle Covered Composite Yarns. Journal of Nanomaterials Article ID. 2016;7565972:1–7.
Viirsalu M, Savest N, Plamus T, Vassiljeva V, Krumme A. Novel method for producing electrospun composite nanofibre yarns. Proceedings of the Estonian Academy of Sciences, Tallinn. 2018;67(2):169–174. doi: 10.3176/proc.2018.2.09. DOI
Thoppey NM, Bochinski JR, Clarke LI, Gorga RE. Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology. 2011;22:345301–345311. doi: 10.1088/0957-4484/22/34/345301. PubMed DOI
Wang, X. & Lin T. Needleless Electrospinning of Nanofibers: Technology and Applications. (Pan Stanford, New Yourk, 2013).
Molnar K, Nagy ZK. Corona-electrospinning: Needleless method for high-throughput continuous nanofiber production. European Polymer Journal. 2016;74:279–286. doi: 10.1016/j.eurpolymj.2015.11.028. DOI
Wu D, et al. High-throughput rod-induced electrospinning. Journal of Physics D: Applied Physics. 2016;49:365302–365308. doi: 10.1088/0022-3727/49/36/365302. DOI
Zhang Y, et al. Stable multi-jet electrospinning with high throughput using the bead structure nozzle. RSC Advances. 2018;8:6069–6074. doi: 10.1039/C7RA13125A. PubMed DOI PMC
Wei L, Yu, Jia HL, Qin X. High-throughput nanofiber produced by needleless electrospinning using a metal dish as the spinneret. Textile Research Journal. 2018;88(1):80–88. doi: 10.1177/0040517516677232. DOI
Jiang G, Qin X. An improved free surface electrospinning for high throughput manufacturing ofcore–shell nanofibers. Materials Letters. 2014;128:259–262. doi: 10.1016/j.matlet.2014.04.074. DOI
Kessick R, Fenn J, Tepper G. The use of AC potentials in electrospraying and electrospinning processes. Polymer. 2004;45:2981–2984. doi: 10.1016/j.polymer.2004.02.056. DOI
Sarkar S, Deevi S, Tepper G. Biased AC Electrospinning of Aligned Polymer Nanofibers. Macromolecular Rapid Communications. 2007;28(9):1034–1039. doi: 10.1002/marc.200700053. DOI
Maheshwari S, Chang HC. Assembly of Multi-Stranded Nanofiber Threads through AC Electrospinning. Advanced Materials. 2009;21:349–354. doi: 10.1002/adma.200800722. DOI
Pokorny P, et al. Effective AC needleless and collectorless electrospinning for yarn production. Physical Chemistry and Chemical Physics. 2014;16(48):26816–26822. doi: 10.1039/C4CP04346D. PubMed DOI
Paulett K, et al. Effect of nanocrystalline cellulose addition on needleless alternating current electrospinning and properties of nanofibrous polyacrylonitrile meshes. Journal of Applied Polymer Science. 2018;135:45772–45781. doi: 10.1002/app.45772. DOI
Lawson C, Stanishevsky A, Sivan M, Pokorny P, Lukas D. Rapid fabrication of poly(e-caprolactone) nanofibers using needleless alternating current electrospinning. Journal of Applied Polymer Science. 2016;133:43232–43235. doi: 10.1002/app.43232. DOI
Stanishevsky A, et al. Ribbon-like and spontaneously folded structures of tungsten oxide nanofibers fabricated via electrospinning. RSC Advances. 2015;5:69534–69542. doi: 10.1039/C5RA11884K. DOI
Stanishevsky A, Brayer WA, Pokorny P, Kalous T, Lukáš D. Nanofibrous alumina structures fabricated using high-yield alternating current electrospinning. Ceramics International. 2016;42:17154–17161. doi: 10.1016/j.ceramint.2016.08.003. DOI
Migushov, I. I. Mechanika tekstilnoj niti i tkani (Legkaja Industrija, Moscow, 1980).
Batra SK, Ghosh TK, Ziedman MI. An integrated approach to dynamic analysis of the ring spinning process, Part II: With air drag and Coriolis acceleration. Textile Research Journal. 1989;59:416–424. doi: 10.1177/004051758905900707. DOI
Lisini GG, Toni P, Quilghini D, Di Giorgi Campedelli VL. A comparison of stationary and non-stationary mathematical models for ring-spinning proces. Journal of the Textile Institute. 1992;83(4):550–559. doi: 10.1080/00405009208631230. DOI
Tang Z-X, Fraser WB, Wang X. Modelling yarn balloon motion in ring spinning. Applied Mathematical Modelling. 2007;31:1397–1410. doi: 10.1016/j.apm.2006.03.031. DOI
Ramkumar SS, et al. Experimental study of the frictional properties of friction spun yarns. Journal of Applied Polymer Science. 2003;88(10):2450–2454. doi: 10.1002/app.11993. DOI
Maeda N, Chen N, Tirrell J, Israelachvili JN. Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science. 2002;297:379–382. doi: 10.1126/science.1072378. PubMed DOI
Morton, W. E. & Hearle, J. W. S. Physical properties of textile fibres (Woodhead Publishing Limited, Cambridge, 2008).
Methods for increasing productivity of AC-electrospinning using weir-electrode
Production of Modified Composite Nanofiber Yarns with Functional Particles
The Optimization of Alternating Current Electrospun PA 6 Solutions Using a Visual Analysis System
ac Bubble Electrospinning Technology for Preparation of Nanofibrous Mats