• This record comes from PubMed

Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning

. 2019 Feb 12 ; 9 (1) : 1801. [epub] 20190212

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 30755709
PubMed Central PMC6372629
DOI 10.1038/s41598-019-38557-z
PII: 10.1038/s41598-019-38557-z
Knihovny.cz E-resources

Nanotechnologies allow the production of yarns containing nanofibres for use in composites, membranes and biomedical materials. Composite yarns with a conventional thread core for mechanical strength and a nanofibrous envelope for functionality, e.g. biological, catalytic, have many advantages. Until now, the production of such yarns has been technologically difficult. Here, we show an approach to composite yarn production whereby a plume of nanofibers generated by high throughput AC needleless and collectorless electrospinning is wound around a classic thread. In the resulting yarn, nanofibres can form up to 80% of its weight. Our yarn production speed was 10 m/min; testing showed this can be increased to 60 m/min. After the yarn was embedded into knitwear, scanning electron microscope images revealed an intact nanofibrous envelope of the composite yarn. Our results indicate that this production method could lead to the widespread production and use of composite nanofibrous yarns on an industrial scale.

See more in PubMed

Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17:R89–R106. doi: 10.1088/0957-4484/17/14/R01. PubMed DOI

Formhals A. Method and apparatus for spinning. US patent. 1944;2(349):950.

Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology. 2001;12(3):384–390. doi: 10.1088/0957-4484/12/3/329. DOI

Ko F, et al. Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns. Advanced Materials. 2003;15(14):1161–5. doi: 10.1002/adma.200304955. DOI

Dalton PD, Klee D, Mãller M. Electrospinning with dual collection rings. Polymer. 2005;46:611–614. doi: 10.1016/j.polymer.2004.11.075. DOI

Ali U, Zhou Y, Wang X, Lin T. Direct electrospinning of highly twisted, continuous nanofiber yarns. Journal of the Textile Institute. 2012;103:80–88. doi: 10.1080/00405000.2011.552254. DOI

Jirsak O, Sanetrink F, Chaloupek J. Nanofiber-covered yarns. Chemical Fibers International. 2011;62:84–85.

Yalcinkaya F, Komarek M, Lubasova D, Sanetrnik F, Maryska J. Preparation of Antibacterial Nanofibre/Nanoparticle Covered Composite Yarns. Journal of Nanomaterials Article ID. 2016;7565972:1–7.

Viirsalu M, Savest N, Plamus T, Vassiljeva V, Krumme A. Novel method for producing electrospun composite nanofibre yarns. Proceedings of the Estonian Academy of Sciences, Tallinn. 2018;67(2):169–174. doi: 10.3176/proc.2018.2.09. DOI

Thoppey NM, Bochinski JR, Clarke LI, Gorga RE. Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology. 2011;22:345301–345311. doi: 10.1088/0957-4484/22/34/345301. PubMed DOI

Wang, X. & Lin T. Needleless Electrospinning of Nanofibers: Technology and Applications. (Pan Stanford, New Yourk, 2013).

Molnar K, Nagy ZK. Corona-electrospinning: Needleless method for high-throughput continuous nanofiber production. European Polymer Journal. 2016;74:279–286. doi: 10.1016/j.eurpolymj.2015.11.028. DOI

Wu D, et al. High-throughput rod-induced electrospinning. Journal of Physics D: Applied Physics. 2016;49:365302–365308. doi: 10.1088/0022-3727/49/36/365302. DOI

Zhang Y, et al. Stable multi-jet electrospinning with high throughput using the bead structure nozzle. RSC Advances. 2018;8:6069–6074. doi: 10.1039/C7RA13125A. PubMed DOI PMC

Wei L, Yu, Jia HL, Qin X. High-throughput nanofiber produced by needleless electrospinning using a metal dish as the spinneret. Textile Research Journal. 2018;88(1):80–88. doi: 10.1177/0040517516677232. DOI

Jiang G, Qin X. An improved free surface electrospinning for high throughput manufacturing ofcore–shell nanofibers. Materials Letters. 2014;128:259–262. doi: 10.1016/j.matlet.2014.04.074. DOI

Kessick R, Fenn J, Tepper G. The use of AC potentials in electrospraying and electrospinning processes. Polymer. 2004;45:2981–2984. doi: 10.1016/j.polymer.2004.02.056. DOI

Sarkar S, Deevi S, Tepper G. Biased AC Electrospinning of Aligned Polymer Nanofibers. Macromolecular Rapid Communications. 2007;28(9):1034–1039. doi: 10.1002/marc.200700053. DOI

Maheshwari S, Chang HC. Assembly of Multi-Stranded Nanofiber Threads through AC Electrospinning. Advanced Materials. 2009;21:349–354. doi: 10.1002/adma.200800722. DOI

Pokorny P, et al. Effective AC needleless and collectorless electrospinning for yarn production. Physical Chemistry and Chemical Physics. 2014;16(48):26816–26822. doi: 10.1039/C4CP04346D. PubMed DOI

Paulett K, et al. Effect of nanocrystalline cellulose addition on needleless alternating current electrospinning and properties of nanofibrous polyacrylonitrile meshes. Journal of Applied Polymer Science. 2018;135:45772–45781. doi: 10.1002/app.45772. DOI

Lawson C, Stanishevsky A, Sivan M, Pokorny P, Lukas D. Rapid fabrication of poly(e-caprolactone) nanofibers using needleless alternating current electrospinning. Journal of Applied Polymer Science. 2016;133:43232–43235. doi: 10.1002/app.43232. DOI

Stanishevsky A, et al. Ribbon-like and spontaneously folded structures of tungsten oxide nanofibers fabricated via electrospinning. RSC Advances. 2015;5:69534–69542. doi: 10.1039/C5RA11884K. DOI

Stanishevsky A, Brayer WA, Pokorny P, Kalous T, Lukáš D. Nanofibrous alumina structures fabricated using high-yield alternating current electrospinning. Ceramics International. 2016;42:17154–17161. doi: 10.1016/j.ceramint.2016.08.003. DOI

Migushov, I. I. Mechanika tekstilnoj niti i tkani (Legkaja Industrija, Moscow, 1980).

Batra SK, Ghosh TK, Ziedman MI. An integrated approach to dynamic analysis of the ring spinning process, Part II: With air drag and Coriolis acceleration. Textile Research Journal. 1989;59:416–424. doi: 10.1177/004051758905900707. DOI

Lisini GG, Toni P, Quilghini D, Di Giorgi Campedelli VL. A comparison of stationary and non-stationary mathematical models for ring-spinning proces. Journal of the Textile Institute. 1992;83(4):550–559. doi: 10.1080/00405009208631230. DOI

Tang Z-X, Fraser WB, Wang X. Modelling yarn balloon motion in ring spinning. Applied Mathematical Modelling. 2007;31:1397–1410. doi: 10.1016/j.apm.2006.03.031. DOI

Ramkumar SS, et al. Experimental study of the frictional properties of friction spun yarns. Journal of Applied Polymer Science. 2003;88(10):2450–2454. doi: 10.1002/app.11993. DOI

Maeda N, Chen N, Tirrell J, Israelachvili JN. Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science. 2002;297:379–382. doi: 10.1126/science.1072378. PubMed DOI

Morton, W. E. & Hearle, J. W. S. Physical properties of textile fibres (Woodhead Publishing Limited, Cambridge, 2008).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...