Modulation of the ATM/autophagy pathway by a G-quadruplex ligand tips the balance between senescence and apoptosis in cancer cells
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
15816
Cancer Research UK - United Kingdom
22903
Cancer Research UK - United Kingdom
PubMed
30759257
PubMed Central
PMC6451122
DOI
10.1093/nar/gkz095
PII: 5316735
Knihovny.cz E-resources
- MeSH
- Apoptosis drug effects genetics MeSH
- Ataxia Telangiectasia Mutated Proteins * antagonists & inhibitors metabolism MeSH
- Autophagy drug effects genetics MeSH
- A549 Cells MeSH
- G-Quadruplexes * MeSH
- HeLa Cells MeSH
- Humans MeSH
- Ligands MeSH
- Mice, Inbred NOD MeSH
- Mice, Knockout MeSH
- Mice, SCID MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Neoplasms genetics pathology MeSH
- DNA Damage drug effects MeSH
- Signal Transduction drug effects genetics MeSH
- Cellular Senescence drug effects genetics MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ATM protein, human MeSH Browser
- Ataxia Telangiectasia Mutated Proteins * MeSH
- Ligands MeSH
G-quadruplex ligands exert their antiproliferative effects through telomere-dependent and telomere-independent mechanisms, but the inter-relationships among autophagy, cell growth arrest and cell death induced by these ligands remain largely unexplored. Here, we demonstrate that the G-quadruplex ligand 20A causes growth arrest of cancer cells in culture and in a HeLa cell xenografted mouse model. This response is associated with the induction of senescence and apoptosis. Transcriptomic analysis of 20A treated cells reveals a significant functional enrichment of biological pathways related to growth arrest, DNA damage response and the lysosomal pathway. 20A elicits global DNA damage but not telomeric damage and activates the ATM and autophagy pathways. Loss of ATM following 20A treatment inhibits both autophagy and senescence and sensitizes cells to death. Moreover, disruption of autophagy by deletion of two essential autophagy genes ATG5 and ATG7 leads to failure of CHK1 activation by 20A and subsequently increased cell death. Our results, therefore, identify the activation of ATM by 20A as a critical player in the balance between senescence and apoptosis and autophagy as one of the key mediators of such regulation. Thus, targeting the ATM/autophagy pathway might be a promising strategy to achieve the maximal anticancer effect of this compound.
ARNA Laboratory Université de Bordeaux INSERM U1212 CNRS UMR 5320 IECB F 33600 Pessac France
Centre de Bioinformatique de Bordeaux université de Bordeaux F 33000 Bordeaux France
Department of Biopathology Institut Bergonié F 33076 Bordeaux France
Institut Bergonié Université de Bordeaux INSERM U1218 F 33076 Bordeaux France
Institut Curie PSL Research University CNRS UMR3244 F 75005 Paris France
Service commun des animaleries Université de Bordeaux F 33000 Bordeaux France
Sorbonne Universités UPMC Univ Paris 06 CNRS UMR3244 F 75005 Paris France
Université Côte d'Azur Centre Commun de Microscopie Appliquée 06108 Nice France
Université de Bordeaux Centre de Génomique Fonctionnelle Plateforme Protéome F 33000 Bordeaux France
See more in PubMed
Huppert J.L., Balasubramanian S.. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007; 35:406–413. PubMed PMC
Bedrat A., Lacroix L., Mergny J.-L.. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016; 44:1746–1759. PubMed PMC
Hänsel-Hertsch R., Di Antonio M., Balasubramanian S.. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 2017; 18:279–284. PubMed
Neidle S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 2016; 59:5987–6011. PubMed
Riou J.F., Guittat L., Mailliet P., Laoui A., Renou E., Petitgenet O., Mégnin-Chanet F., Hélène C., Mergny J.L.. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc. Natl. Acad. Sci. U.S.A. 2002; 99:2672–2677. PubMed PMC
Burger A.M., Dai F., Schultes C.M., Reszka A.P., Moore M.J., Double J.A., Neidle S.. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 2005; 65:1489–1496. PubMed
Biffi G., Tannahill D., McCafferty J., Balasubramanian S.. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013; 5:182–186. PubMed PMC
Rigo R., Palumbo M., Sissi C.. G-quadruplexes in human promoters: a challenge for therapeutic applications. Biochim. Biophys. Acta. 2017; 1861:1399–1413. PubMed
Cammas A., Millevoi S.. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res. 2017; 45:1584–1595. PubMed PMC
Fay M.M., Lyons S.M., Ivanov P.. RNA G-Quadruplexes in biology: principles and molecular mechanisms. J. Mol. Biol. 2017; 429:2127–2147. PubMed PMC
Salvati E., Rizzo A., Iachettini S., Zizza P., Cingolani C., D’Angelo C., Porru M., Mondello C., Aiello A., Farsetti A. et al. .. A basal level of DNA damage and telomere deprotection increases the sensitivity of cancer cells to G-quadruplex interactive compounds. Nucleic Acids Res. 2015; 43:1759–1769. PubMed PMC
Huang F.-C., Chang C.-C., Wang J.-M., Chang T.-C., Lin J.-J.. Induction of senescence in cancer cells by the G-quadruplex stabilizer, BMVC4, is independent of its telomerase inhibitory activity. Br. J. Pharmacol. 2012; 167:393–406. PubMed PMC
Orlotti N.I., Cimino-Reale G., Borghini E., Pennati M., Sissi C., Perrone F., Palumbo M., Daidone M.G., Folini M., Zaffaroni N.. Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy. 2012; 8:1185–1196. PubMed
Salvati E., Leonetti C., Rizzo A., Scarsella M., Mottolese M., Galati R., Sperduti I., Stevens M.F.G., D’Incalci M., Blasco M. et al. .. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Invest. 2007; 117:3236–3247. PubMed PMC
Zimmer J., Tacconi E.M.C., Folio C., Badie S., Porru M., Klare K., Tumiati M., Markkanen E., Halder S., Ryan A. et al. .. Targeting BRCA1 and BRCA2 deficiencies with G-Quadruplex-Interacting compounds. Mol. Cell. 2016; 61:449–460. PubMed PMC
Ohnmacht S.A., Marchetti C., Gunaratnam M., Besser R.J., Haider S.M., Di Vita G., Lowe H.L., Mellinas-Gomez M., Diocou S., Robson M. et al. .. A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer. Sci. Rep. 2015; 5:11385. PubMed PMC
Porru M., Zizza P., Franceschin M., Leonetti C., Biroccio A.. EMICORON: a multi-targeting G4 ligand with a promising preclinical profile. Biochim. Biophys. Acta. 2017; 1861:1362–1370. PubMed
Ohnmacht S.A., Neidle S.. Small-molecule quadruplex-targeted drug discovery. Bioorg. Med. Chem. Lett. 2014; 24:2602–2612. PubMed
Duarte A.R., Cadoni E., Ressurreição A.S., Moreira R., Paulo A.. Design of modular G-quadruplex ligands. ChemMedChem. 2018; 13:869–893. PubMed
Smith N.M., Labrunie G., Corry B., Tran P.L.T., Norret M., Djavaheri-Mergny M., Raston C.L., Mergny J.-L.. Unraveling the relationship between structure and stabilization of triarylpyridines as G-quadruplex binding ligands. Org. Biomol. Chem. 2011; 9:6154–6162. PubMed
Kerkour A., Mergny J.-L., Salgado G.F.. NMR based model of human telomeric repeat G-quadruplex in complex with 2,4,6-triarylpyridine family ligand. Biochim. Biophys. Acta. 2017; 1861:1293–1302. PubMed
Klionsky D.J., Codogno P.. The mechanism and physiological function of macroautophagy. J. Innate Immun. 2013; 5:427–433. PubMed PMC
Galluzzi L., Baehrecke E.H., Ballabio A., Boya P., Bravo-San Pedro J.M., Cecconi F., Choi A.M., Chu C.T., Codogno P., Colombo M.I. et al. .. Molecular definitions of autophagy and related processes. EMBO J. 2017; 36:1811–1836. PubMed PMC
Lamb C.A., Yoshimori T., Tooze S.A.. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 2013; 14:759–774. PubMed
Kroemer G., Mariño G., Levine B.. Autophagy and the integrated stress response. Mol. Cell. 2010; 40:280–293. PubMed PMC
Johansen T., Lamark T.. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011; 7:279–296. PubMed PMC
Rosenfeldt M.T., Ryan K.M.. The multiple roles of autophagy in cancer. Carcinogenesis. 2011; 32:955–963. PubMed PMC
White E. The role for autophagy in cancer. J. Clin. Invest. 2015; 125:42–46. PubMed PMC
Galluzzi L., Pietrocola F., Bravo-San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., Codogno P., Debnath J., Gewirtz D.A., Karantza V. et al. .. Autophagy in malignant transformation and cancer progression. EMBO J. 2015; 34:856–880. PubMed PMC
Levy J.M.M., Towers C.G., Thorburn A.. Targeting autophagy in cancer. Nat. Rev. Cancer. 2017; 17:528–542. PubMed PMC
Kang C., Elledge S.J.. How autophagy both activates and inhibits cellular senescence. Autophagy. 2016; 12:898–899. PubMed PMC
Gewirtz D.A. Autophagy and senescence in cancer therapy. J. Cell. Physiol. 2014; 229:6–9. PubMed
Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L., Amelio I., Andrews D.W. et al. .. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018; 25:486–541. PubMed PMC
Eliopoulos A.G., Havaki S., Gorgoulis V.G.. DNA damage response and autophagy: a meaningful partnership. Front. Genet. 2016; 7:204. PubMed PMC
Hewitt G., Korolchuk V.I.. Repair, reuse, recycle: the expanding role of autophagy in genome maintenance. Trends Cell Biol. 2017; 27:340–351. PubMed
Zhou W.-J., Deng R., Feng G.-K., Zhu X.-F.. [A G-quadruplex ligand SYUIQ-5 induces autophagy by inhibiting the Akt-FOXO3a pathway in nasopharyngeal cancer cells]. Ai Zheng Aizheng Chin. J. Cancer. 2009; 28:1049–1053. PubMed
Zhou W.-J., Deng R., Zhang X.-Y., Feng G.-K., Gu L.-Q., Zhu X.-F.. G-quadruplex ligand SYUIQ-5 induces autophagy by telomere damage and TRF2 delocalization in cancer cells. Mol. Cancer Ther. 2009; 8:3203–3213. PubMed
Trocoli A., Mathieu J., Priault M., Reiffers J., Souquere S., Pierron G., Besançon F., Djavaheri-Mergny M.. ATRA-induced upregulation of Beclin 1 prolongs the life span of differentiated acute promyelocytic leukemia cells. Autophagy. 2011; 7:1108–1114. PubMed PMC
Georgakopoulou E.A., Tsimaratou K., Evangelou K., Fernandez Marcos P.J., Zoumpourlis V., Trougakos I.P., Kletsas D., Bartek J., Serrano M., Gorgoulis V.G.. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging. 2013; 5:37–50. PubMed PMC
Cesare A.J., Kaul Z., Cohen S.B., Napier C.E., Pickett H.A., Neumann A.A., Reddel R.R.. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat. Struct. Mol. Biol. 2009; 16:1244–1251. PubMed
Djavaheri-Mergny M., Amelotti M., Mathieu J., Besançon F., Bauvy C., Souquère S., Pierron G., Codogno P.. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J. Biol. Chem. 2006; 281:30373–30382. PubMed
Henriet E., Abou Hammoud A., Dupuy J.-W., Dartigues B., Ezzoukry Z., Dugot-Senant N., Leste-Lasserre T., Pallares-Lupon N., Nikolski M., Le Bail B. et al. .. Argininosuccinate synthase 1 (ASS1): a marker of unclassified hepatocellular adenoma and high bleeding risk. Hepatol. Baltim. Md. 2017; 66:2016–2028. PubMed
Käll L., Canterbury J.D., Weston J., Noble W.S., MacCoss M.J.. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods. 2007; 4:923–925. PubMed
Pineda E., Thonnus M., Mazet M., Mourier A., Cahoreau E., Kulyk H., Dupuy J.-W., Biran M., Masante C., Allmann S. et al. .. Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: analysis of metabolic adaptations on glycerol-rich conditions. PLoS Pathog. 2018; 14:e1007412. PubMed PMC
Love M.I., Huber W., Anders S.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. PubMed PMC
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K.. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43:e47. PubMed PMC
Durinck S., Spellman P.T., Birney E., Huber W.. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009; 4:1184–1191. PubMed PMC
Mootha V.K., Lindgren C.M., Eriksson K.-F., Subramanian A., Sihag S., Lehar J., Puigserver P., Carlsson E., Ridderstråle M., Laurila E. et al. .. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003; 34:267–273. PubMed
Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S. et al. .. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:15545–15550. PubMed PMC
Liberzon A., Birger C., Thorvaldsdóttir H., Ghandi M., Mesirov J.P., Tamayo P.. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015; 1:417–425. PubMed PMC
Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K.. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017; 45:D353–D361. PubMed PMC
Luo W., Brouwer C.. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinforma. Oxf. Engl. 2013; 29:1830–1831. PubMed PMC
Li J., Stern D.F.. Regulation of CHK2 by DNA-dependent protein kinase. J. Biol. Chem. 2005; 280:12041–12050. PubMed
Shultz L.D., Lyons B.L., Burzenski L.M., Gott B., Chen X., Chaleff S., Kotb M., Gillies S.D., King M., Mangada J. et al. .. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. Baltim. Md 1950. 2005; 174:6477–6489. PubMed
Fulcher D., Wong S.. Carboxyfluorescein succinimidyl ester-based proliferative assays for assessment of T cell function in the diagnostic laboratory. Immunol. Cell Biol. 1999; 77:559–564. PubMed
Crighton D., Wilkinson S., O’Prey J., Syed N., Smith P., Harrison P.R., Gasco M., Garrone O., Crook T., Ryan K.M.. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006; 126:121–134. PubMed
Mizushima N., Yoshimori T., Ohsumi Y.. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011; 27:107–132. PubMed
Boya P., Reggiori F., Codogno P.. Emerging regulation and functions of autophagy. Nat. Cell Biol. 2013; 15:713–720. PubMed PMC
Smith J., Tho L.M., Xu N., Gillespie D.A.. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 2010; 108:73–112. PubMed
Lamark T., Svenning S., Johansen T.. Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem. 2017; 61:609–624. PubMed
Liu E.Y., Xu N., O’Prey J., Lao L.Y., Joshi S., Long J.S., O’Prey M., Croft D.R., Beaumatin F., Baudot A.D. et al. .. Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:773–778. PubMed PMC
Schmitt C.A., Fridman J.S., Yang M., Lee S., Baranov E., Hoffman R.M., Lowe S.W.. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 2002; 109:335–346. PubMed
Chen J.-H., Hales C.N., Ozanne S.E.. DNA damage, cellular senescence and organismal ageing: causal or correlative?. Nucleic Acids Res. 2007; 35:7417–7428. PubMed PMC
Campisi J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 2013; 75:685–705. PubMed PMC
Nakamura A.J., Chiang Y.J., Hathcock K.S., Horikawa I., Sedelnikova O.A., Hodes R.J., Bonner W.M.. Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenetics Chromatin. 2008; 1:6. PubMed PMC
Maréchal A., Zou L.. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 2013; 5:a012716. PubMed PMC
Aird K.M., Worth A.J., Snyder N.W., Lee J.V., Sivanand S., Liu Q., Blair I.A., Wellen K.E., Zhang R.. ATM couples replication stress and metabolic reprogramming during cellular senescence. Cell Rep. 2015; 11:893–901. PubMed PMC
Aliouat-Denis C.-M., Dendouga N., Van den Wyngaert I., Goehlmann H., Steller U., van de Weyer I., Van Slycken N., Andries L., Kass S., Luyten W. et al. .. p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2. Mol. Cancer Res. MCR. 2005; 3:627–634. PubMed
Zhang X., Li J., Sejas D.P., Pang Q.. The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. J. Biol. Chem. 2005; 280:19635–19640. PubMed
Gartel A.L., Tyner A.L.. Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp. Cell Res. 1999; 246:280–289. PubMed
Jung Y.-S., Qian Y., Chen X.. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell. Signal. 2010; 22:1003–1012. PubMed PMC
Xu H., Di Antonio M., McKinney S., Mathew V., Ho B., O’Neil N.J., Santos N.D., Silvester J., Wei V., Garcia J. et al. .. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 2017; 8:14432. PubMed PMC
Salvati E., Botta L., Amato J., Di Leva F.S., Zizza P., Gioiello A., Pagano B., Graziani G., Tarsounas M., Randazzo A. et al. .. Lead discovery of dual G-Quadruplex stabilizers and Poly(ADP-ribose) polymerases (PARPs) inhibitors: a new avenue in anticancer treatment. J. Med. Chem. 2017; 60:3626–3635. PubMed
Singh K., Matsuyama S., Drazba J.A., Almasan A.. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy. 2012; 8:236–251. PubMed PMC
Kang H.T., Park J.T., Choi K., Kim Y., Choi H.J.C., Jung C.W., Lee Y.-S., Chul Park S.. Chemical screening identifies ATM as a target for alleviating senescence. Nat. Chem. Biol. 2017; 13:616–623. PubMed
Campisi J., d’Adda di Fagagna F.. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007; 8:729–740. PubMed
Sørensen C.S., Hansen L.T., Dziegielewski J., Syljuåsen R.G., Lundin C., Bartek J., Helleday T.. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol. 2005; 7:195–201. PubMed
Yan S., Sorrell M., Berman Z.. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell. Mol. Life Sci. CMLS. 2014; 71:3951–3967. PubMed PMC
Douarre C., Mergui X., Sidibe A., Gomez D., Alberti P., Mailliet P., Trentesaux C., Riou J.-F.. DNA damage signaling induced by the G-quadruplex ligand 12459 is modulated by PPM1D/WIP1 phosphatase. Nucleic Acids Res. 2013; 41:3588–3599. PubMed PMC
Vizcaíno J.A., Csordas A., del-Toro N., Dianes J.A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T. et al. .. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016; 44:D447–D456. PubMed PMC