Crucial Role of Microbiota in Experimental Psoriasis Revealed by a Gnotobiotic Mouse Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30846974
PubMed Central
PMC6394148
DOI
10.3389/fmicb.2019.00236
Knihovny.cz E-zdroje
- Klíčová slova
- animal model, antibiotics, germ-free, imiquimod, intestine, microbiota, psoriasis, skin,
- Publikační typ
- časopisecké články MeSH
Psoriatic patients have altered microbiota, both in the intestine and on the skin. It is not clear, however, whether this is a cause or consequence of the disease. In this study, using an experimental mouse model of psoriasis induced by imiquimod (IMQ), we show that oral treatment with a broad spectrum of antibiotics (MIX) or metronidazole (MET) alone mitigates the severity of skin inflammation through downregulation of Th17 immune response in conventional mice. Since some antibiotics, including MET, can influence immune system reactivity, we also evaluated the effect of MIX in the same model under germ-free (GF) conditions. GF mice treated with MET did not show milder signs of imiquimod-induced skin inflammation (IISI) which supports the conclusion that the therapeutic effect is mediated by changes in microbiota composition. Moreover, compared to controls, mice treated with MIX had a significantly higher abundance of the genus Lactobacillus in the intestine and on the skin. Mice treated with MET had a significantly higher abundance of the genera Bifidobacterium and Enterococcus both on the skin and in the intestine and of Parabacteroides distasonis in the intestine. Additionally, GF mice and mice monocolonized with either Lactobacillus plantarum or segmented filamentous bacteria (SFB) were more resistant to IISI than conventional mice. Interestingly, compared to GF mice, IMQ induced a higher degree of systemic Th17 activation in mice monocolonized with SFB but not with L. plantarum. The present findings provide evidence that intestinal and skin microbiota directly regulates IISI and emphasizes the importance of microbiota in the pathogenesis of psoriasis.
1st Faculty of Medicine Charles University Prague Czechia
BIOCEV Institute of Microbiology Czech Academy of Sciences Vestec Czechia
Institute of Experimental Medicine of the Czech Academy of Sciences v v i Prague Czechia
Institute of Microbiology of the Czech Academy of Sciences v v i Novy Hradek Czechia
Institute of Microbiology of the Czech Academy of Sciences v v i Prague Czechia
Institute of Molecular Genetics of the Czech Academy of Sciences v v i Prague Czechia
Zobrazit více v PubMed
Al-Banna N. A., Pavlovic D., Grundling M., Zhou J., Kelly M., Whynot S., et al. . (2013). Impact of antibiotics on the microcirculation in local and systemic inflammation. Clin. Hemorheol. Microcirc. 53, 155–169. 10.3233/CH-2012-1583, PMID: PubMed DOI
Alekseyenko A. V., Perez-Perez G. I., De Souza A., Strober B., Gao Z., Bihan M., et al. (2013). Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 1:31. 10.1186/2049-2618-1-31 PubMed DOI PMC
Armstrong A. W., Harskamp C. T., Armstrong E. J. (2013). Psoriasis and metabolic syndrome: a systematic review and meta-analysis of observational studies. J. Am. Acad. Dermatol. 68, 654–662. 10.1016/j.jaad.2012.08.015 PubMed DOI
Becker E., Bengs S., Aluri S., Opitz L., Atrott K., Stanzel C., et al. (2016). Doxycycline, metronidazole and isotretinoin: do they modify microRNA/mRNA expression profiles and function in murine T-cells? Sci. Rep. 6:37082. 10.1038/srep37082 PubMed DOI PMC
Boehncke W. H. (2018). Systemic inflammation and cardiovascular comorbidity in psoriasis patients: causes and consequences. Front. Immunol. 9:579. 10.3389/fimmu.2018.00579 PubMed DOI PMC
Buyuk A. Y., Kavala M. (2000). Oral metronidazole treatment of lichen planus. J. Am. Acad. Dermatol. 43, 260–262. 10.1067/mjd.2000.104683 PubMed DOI
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Castiglione F., Rispo A., Di Girolamo E., Cozzolino A., Manguso F., Grassia R., et al. (2003). Antibiotic treatment of small bowel bacterial overgrowth in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 18, 1107–1112. 10.1046/j.1365-2036.2003.01800.x PubMed DOI
Dejaco C., Harrer M., Waldhoer T., Miehsler W., Vogelsang H., Reinisch W. (2003). Antibiotics and azathioprine for the treatment of perianal fistulas in Crohn’s disease. Aliment. Pharmacol. Ther. 18, 1113–1120. 10.1046/j.1365-2036.2003.01793.x, PMID: PubMed DOI
Drago F., Ciccarese G., Indemini E., Savarino V., Parodi A. (2018). Psoriasis and small intestine bacterial overgrowth. Int. J. Dermatol. 57, 112–113. 10.1111/ijd.13797, PMID: PubMed DOI
Erdman S. E., Poutahidis T. (2014). Probiotic ‘glow of health’: it’s more than skin deep. Benef. Microbes 5, 109–119. 10.3920/BM2013.0042 PubMed DOI PMC
Fry L., Baker B. S., Powles A. V., Fahlen A., Engstrand L. (2013). Is chronic plaque psoriasis triggered by microbiota in the skin? Br. J. Dermatol. 169, 47–52. 10.1111/bjd.12322, PMID: PubMed DOI
Furusawa Y., Obata Y., Fukuda S., Endo T. A., Nakato G., Takahashi D., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450. 10.1038/nature12721 PubMed DOI
Gao Z., Tseng C. H., Strober B. E., Pei Z., Blaser M. J. (2008). Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One 3:e2719. 10.1371/journal.pone.0002719, PMID: PubMed DOI PMC
Gorska S., Schwarzer M., Jachymek W., Srutkova D., Brzozowska E., Kozakova H., et al. (2014). Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl. Environ. Microbiol. 80, 6506–6516. 10.1128/AEM.02104-14 PubMed DOI PMC
Grove D. I., Mahmound A. A., Warren K. S. (1977). Suppression of cell-mediated immunity by metronidazole. Int. Arch. Allergy Appl. Immunol. 54, 422–427. PubMed
Heissigerova J., Seidler Stangova P., Klimova A., Svozilkova P., Hrncir T., Stepankova R., et al. . (2016). The microbiota determines susceptibility to experimental autoimmune uveoretinitis. J. Immunol. Res. 2016:5065703. 10.1155/2016/5065703, PMID: PubMed DOI PMC
Horton D. B., Scott F. I., Haynes K., Putt M. E., Rose C. D., Lewis J. D., et al. . (2016). Antibiotic exposure, infection, and the development of pediatric psoriasis: a nested case-control study. JAMA Dermatol. 152, 191–199. 10.1001/jamadermatol.2015.3650, PMID: PubMed DOI PMC
Hrncir T., Stepankova R., Kozakova H., Hudcovic T., Tlaskalova-Hogenova H. (2008). Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol. 9:65. 10.1186/1471-2172-9-65, PMID: PubMed DOI PMC
Ivanov I. I., Atarashi K., Manel N., Brodie E. L., Shima T., Karaoz U., et al. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498. 10.1016/j.cell.2009.09.033 PubMed DOI PMC
Jang S. E., Han M. J., Kim S. Y., Kim D. H. (2014). Lactobacillus plantarum CLP-0611 ameliorates colitis in mice by polarizing M1 to M2-like macrophages. Int. Immunopharmacol. 21, 186–192. 10.1016/j.intimp.2014.04.021, PMID: PubMed DOI
Kim H., Kim H. R., Kim N. R., Jeong B. J., Lee J. S., Jang S., et al. . (2015). Oral administration of Lactobacillus plantarum lysates attenuates the development of atopic dermatitis lesions in mouse models. J. Microbiol. 53, 47–52. 10.1007/s12275-015-4483-z, PMID: PubMed DOI
Kong H. H., Oh J., Deming C., Conlan S., Grice E. A., Beatson M. A., et al. . (2012). Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850–859. 10.1101/gr.131029.111, PMID: PubMed DOI PMC
Kozakova H., Schwarzer M., Tuckova L., Srutkova D., Czarnowska E., Rosiak I., et al. . (2016). Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell. Mol. Immunol. 13, 251–262. 10.1038/cmi.2015.09, PMID: PubMed DOI PMC
Levkovich T., Poutahidis T., Smillie C., Varian B. J., Ibrahim Y. M., Lakritz J. R., et al. . (2013). Probiotic bacteria induce a ‘glow of health’. PLoS One 8, e53867. 10.1371/journal.pone.0053867, PMID: PubMed DOI PMC
Mak R. K., Hundhausen C., Nestle F. O. (2009). Progress in understanding the immunopathogenesis of psoriasis. Actas Dermosifiliogr. 100(Suppl. 2), 2–13. 10.1016/S0001-7310(09)73372-1 PubMed DOI PMC
Mariman R., Reefman E., Tielen F., Persoon-Deen C., van de Mark K., Worms N., et al. . (2016). Lactobacillus plantarum NCIMB8826 ameliorates inflammation of colon and skin in human APOC1 transgenic mice. Benef. Microbes 7, 215–225. 10.3920/BM2015.0074, PMID: PubMed DOI
McFadden J. P., Baker B. S., Powles A. V., Fry L. (2009). Psoriasis and streptococci: the natural selection of psoriasis revisited. Br. J. Dermatol. 160, 929–937. 10.1111/j.1365-2133.2009.09102.x PubMed DOI
Naldi L., Peli L., Parazzini F., Carrel C. F. (2001). Family history of psoriasis, stressful life events, and recent infectious disease are risk factors for a first episode of acute guttate psoriasis: results of a case-control study. J. Am. Acad. Dermatol. 44, 433–438. 10.1067/mjd.2001.110876 PubMed DOI
Noah P. W. (1990). The role of microorganisms in psoriasis. Semin. Dermatol. 9, 269–276. PMID: PubMed
O’Neill C. A., Monteleone G., McLaughlin J. T., Paus R. (2016). The gut-skin axis in health and disease: a paradigm with therapeutic implications. Bioessays 38, 1167–1176. 10.1002/bies.201600008, PMID: PubMed DOI
Ramírez-Boscá A., Navarro-López V., Martínez-Andrés A., Such J., Francés R., Horga de la Parte J., et al. (2015). Identification of bacterial dna in the peripheral blood of patients with active psoriasis. JAMA Dermatol. 151, E1–E2. 10.1001/jamadermatol.2014.5585 PubMed DOI
Rasi A., Behzadi A. H., Davoudi S., Rafizadeh P., Honarbakhsh Y., Mehran M., et al. . (2010). Efficacy of oral metronidazole in treatment of cutaneous and mucosal lichen planus. J. Drugs Dermatol. 9, 1186–1190. PMID: PubMed
Reikvam D. H., Erofeev A., Sandvik A., Grcic V., Jahnsen F. L., Gaustad P., et al. . (2011). Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One 6:e17996. 10.1371/journal.pone.0017996, PMID: PubMed DOI PMC
Rutgeerts P., Hiele M., Geboes K., Peeters M., Penninckx F., Aerts R., et al. . (1995). Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection. Gastroenterology 108, 1617–1621. 10.1016/0016-5085(95)90121-3, PMID: PubMed DOI
Salem I., Ramser A., Isham N., Ghannoum M. A. (2018). The gut microbiome as a major regulator of the gut-skin axis. Front. Microbiol. 9:1459. 10.3389/fmicb.2018.01459 PubMed DOI PMC
Schwarzer M., Hermanova P., Srutkova D., Golias J., Hudcovic T., Zwicker C., et al. (2019). Germ-free mice exhibit mast cells with impaired functionality and gut homing and do not develop food allergy. Front. Immunol. 10:205. 10.3389/fimmu.2019.00205 PubMed DOI PMC
Scott N. A., Andrusaite A., Andersen P., Lawson M., Alcon-Giner C., Leclaire C., et al. . (2018). Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci. Transl. Med. 10. 10.1126/scitranslmed.aao4755, PMID: PubMed DOI PMC
Smith P. M., Howitt M. R., Panikov N., Michaud M., Gallini C. A., Bohlooly Y. M., et al. . (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573. 10.1126/science.1241165, PMID: PubMed DOI PMC
Snel J., Heinen P. P., Blok H. J., Carman R. J., Duncan A. J., Allen P. C., et al. . (1995). Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “Candidatus Arthromitus”. Int. J. Syst. Bacteriol. 45, 780–782. 10.1099/00207713-45-4-780, PMID: PubMed DOI
Steinhart A. H., Feagan B. G., Wong C. J., Vandervoort M., Mikolainis S., Croitoru K., et al. . (2002). Combined budesonide and antibiotic therapy for active Crohn’s disease: a randomized controlled trial. Gastroenterology 123, 33–40. 10.1053/gast.2002.34225, PMID: PubMed DOI
Stepankova R., Powrie F., Kofronova O., Kozakova H., Hudcovic T., Hrncir T., et al. . (2007). Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. Inflamm. Bowel Dis. 13, 1202–1211. 10.1002/ibd.20221, PMID: PubMed DOI
Tan L., Zhao S., Zhu W., Wu L., Li J., Shen M., et al. . (2018). The Akkermansia muciniphila is a gut microbiota signature in psoriasis. Exp. Dermatol. 27, 144–149. 10.1111/exd.13463, PMID: PubMed DOI
Tett A., Pasolli E., Farina S., Truong D. T., Asnicar F., Zolfo M., et al. (2017). Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiomes 3:14. 10.1038/s41522-017-0022-522 PubMed DOI PMC
Tlaskalova-Hogenova H., Stepankova R., Kozakova H., Hudcovic T., Vannucci L., Tuckova L., et al. . (2011). The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8, 110–120. 10.1038/cmi.2010.67, PMID: PubMed DOI PMC
Tsankov N., Botev-Zlatkov N., Lazarova A. Z., Kostova M., Popova L., Tonev S. (1988). Psoriasis and drugs: influence of tetracyclines on the course of psoriasis. J. Am. Acad. Dermatol. 19, 629–632. PubMed
van der Fits L., Mourits S., Voerman J. S., Kant M., Boon L., Laman J. D., et al. (2009). Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845. 10.4049/jimmunol.0802999 PubMed DOI
Viaud S., Saccheri F., Mignot G., Yamazaki T., Daillere R., Hannani D., et al. . (2013). The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976. 10.1126/science.1240537, PMID: PubMed DOI PMC
Vlachos C., Gaitanis G., Katsanos K. H., Christodoulou D. K., Tsianos E., Bassukas I. D. (2016). Psoriasis and inflammatory bowel disease: links and risks. Psoriasis 6, 73–92. 10.2147/PTT.S85194ptt-6-073 PubMed DOI PMC
Wahba-Yahav A. V. (1995). Idiopathic lichen planus: treatment with metronidazole. J. Am. Acad. Dermatol. 33, 301–302. PubMed
Waldman A., Gilhar A., Duek L., Berdicevsky I. (2001). Incidence of Candida in psoriasis - a study on the fungal flora of psoriatic patients. Mycoses 44, 77–81. 10.1046/j.1439-0507.2001.00608.x, PMID: PubMed DOI
Weisenseel P., Laumbacher B., Besgen P., Ludolph-Hauser D., Herzinger T., Roecken M., et al. . (2002). Streptococcal infection distinguishes different types of psoriasis. J. Med. Genet. 39, 767–768. 10.1136/jmg.39.10.767, PMID: PubMed DOI PMC
Yan D., Issa N., Afifi L., Jeon C., Chang H. W., Liao W. (2017). The role of the skin and gut microbiome in psoriatic disease. Curr. Dermatol. Rep. 6, 94–103. 10.1007/s13671-017-0178-5, PMID: PubMed DOI PMC
Zakostelska Z., Kverka M., Klimesova K., Rossmann P., Mrazek J., Kopecny J., et al. . (2011). Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 6:e27961. 10.1371/journal.pone.0027961, PMID: PubMed DOI PMC
Zakostelska Z., Malkova J., Klimesova K., Rossmann P., Hornova M., Novosadova I., et al. . (2016). Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS One 11:e0159539. 10.1371/journal.pone.0159539, PMID: PubMed DOI PMC
Zanvit P., Konkel J. E., Jiao X., Kasagi S., Zhang D., Wu R., et al. (2015). Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat. Commun. 6:8424. 10.1038/ncomms9424 PubMed DOI PMC
Zeng J., Luo S., Huang Y., Lu Q. (2017). Critical role of environmental factors in the pathogenesis of psoriasis. J. Dermatol. 44, 863–872. 10.1111/1346-8138.13806, PMID: PubMed DOI
Bifidobacteria in disease: from head to toe
Contribution of Infectious Agents to the Development of Celiac Disease