Limits of Babinet's principle for solid and hollow plasmonic antennas
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
17-25799S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2015041
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
30850673
PubMed Central
PMC6408474
DOI
10.1038/s41598-019-40500-1
PII: 10.1038/s41598-019-40500-1
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We present an experimental and theoretical study of Babinet's principle of complementarity in plasmonics. We have used spatially-resolved electron energy loss spectroscopy and cathodoluminescence to investigate electromagnetic response of elementary plasmonic antenna: gold discs and complementary disc-shaped apertures in a gold layer. We have also calculated their response to the plane wave illumination. While the qualitative validity of Babinet's principle has been confirmed, quantitative differences have been found related to the energy and quality factor of the resonances and the magnitude of related near fields. In particular, apertures were found to exhibit stronger interaction with the electron beam than solid antennas, which makes them a remarkable alternative of the usual plasmonic-antennas design. We also examine the possibility of magnetic near field imaging based on the Babinet's principle.
See more in PubMed
Novotny L, van Hulst N. Antennas for light. Nat. Photonics. 2011;5:83. doi: 10.1038/nphoton.2010.237. DOI
Schuller JA, et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9:193. doi: 10.1038/nmat2630. PubMed DOI
Benz F, et al. Single-molecule optomechanics in “picocavities”. Sci. 2016;354:726–729. doi: 10.1126/science.aah5243. PubMed DOI
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI
Anderson MS. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 2000;76:3130–3132. doi: 10.1063/1.126546. DOI
Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006;96:113002. doi: 10.1103/PhysRevLett.96.113002. PubMed DOI
Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010;9:205. doi: 10.1038/nmat2629. PubMed DOI
Farahani JN, Pohl DW, Eisler H-J, Hecht B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 2005;95:017402. doi: 10.1103/PhysRevLett.95.017402. PubMed DOI
Pfeiffer M, et al. Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna. Nano Lett. 2010;10:4555–4558. doi: 10.1021/nl102548t. PubMed DOI
Cheng F, et al. Enhanced photoluminescence of monolayer WS2 on Ag films and nanowire-WS2-film composites. ACS Photonics. 2017;4:1421–1430. doi: 10.1021/acsphotonics.7b00152. DOI
Born, M., Wolf, E. & Bhatia, A. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
Falcone F, et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 2004;93:197401. doi: 10.1103/PhysRevLett.93.197401. PubMed DOI
Zentgraf T, et al. Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys. Rev. B. 2007;76:033407. doi: 10.1103/PhysRevB.76.033407. DOI
Chen H-T, et al. Complementary planar terahertz metamaterials. Opt. Express. 2007;15:1084–1095. doi: 10.1364/OE.15.001084. PubMed DOI
Hand TH, Gollub J, Sajuyigbe S, Smith DR, Cummer SA. Characterization of complementary electric field coupled resonant surfaces. Appl. Phys. Lett. 2008;93:212504. doi: 10.1063/1.3037215. DOI
Hentschel M, Weiss T, Bagheri S, Giessen H. Babinet to the half: Coupling of solid and inverse plasmonic structures. Nano Lett. 2013;13:4428–4433. doi: 10.1021/nl402269h. PubMed DOI
Kim J, et al. Babinet-inverted optical Yagi–Uda antenna for unidirectional radiation to free space. Nano Lett. 2014;14:3072–3078. doi: 10.1021/nl500062f. PubMed DOI
Taminiau TH, Karaveli S, van Hulst NF, Zia R. Quantifying the magnetic nature of light emission. Nat. Commun. 2012;3:979. doi: 10.1038/ncomms1984. PubMed DOI
Feth N, et al. Second-harmonic generation from complementary split-ring resonators. Opt. Lett. 2008;33:1975–1977. doi: 10.1364/OL.33.001975. PubMed DOI
Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB. Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. Small. 2011;7:1653–1663. doi: 10.1002/smll.201002228. PubMed DOI
Huck C, et al. Plasmonic enhancement of infrared vibrational signals: Nanoslits versus nanorods. ACS Photonics. 2015;2:1489–1497. doi: 10.1021/acsphotonics.5b00390. DOI
Ni X, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light. Sci. Appl. 2013;2:e72. doi: 10.1038/lsa.2013.28. DOI
Arthur Losquin TTAL. Electron microscopy methods for space-, energy-, and time-resolved plasmonics. Front. Phys. 2017;12:127301. doi: 10.1007/s11467-016-0605-2. DOI
García de Abajo FJ. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI
Schnell M, Garcia-Etxarri A, Alkorta J, Aizpurua J, Hillenbrand R. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Lett. 2010;10:3524–3528. doi: 10.1021/nl101693a. PubMed DOI
Wu Y, Li G, Camden JP. Probing nanoparticle plasmons with electron energy loss spectroscopy. Chem. Rev. 2018;118:2994–3031. doi: 10.1021/acs.chemrev.7b00354. PubMed DOI
Yamamoto N, Araya K, García de Abajo FJ. Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B. 2001;64:205419. doi: 10.1103/PhysRevB.64.205419. DOI
Rang M, et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett. 2008;8:3357–3363. doi: 10.1021/nl801808b. PubMed DOI
Dvořák P, et al. Control and near-field detection of surface plasmon interference patterns. Nano Lett. 2013;13:2558–2563. doi: 10.1021/nl400644r. PubMed DOI
Dvořák P, et al. Imaging of near-field interference patterns by aperture-type SNOM; influence of illumination wavelength and polarization state. Opt. Express. 2017;25:16560–16573. doi: 10.1364/OE.25.016560. PubMed DOI
Bitzer, A., Ortner, A., Merbold, H., Feurer, T. & Walther, M. Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle. Opt. Express19, 2537–2545, 10.1364/OE.19.002537 (2011). PubMed
Babocký J, et al. Quantitative 3D phase imaging of plasmonic metasurfaces. ACS Photonics. 2017;4:1389–1397. doi: 10.1021/acsphotonics.7b00022. DOI
von Cube F, et al. Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy. Opt. Mater. Express. 2011;1:1009–1018. doi: 10.1364/OME.1.001009. DOI
Mizobata H, Ueno K, Misawa H, Okamoto H, Imura K. Near-field spectroscopic properties of complementary gold nanostructures: applicability of Babinet’s principle in the optical region. Opt. Express. 2017;25:5279–5289. doi: 10.1364/OE.25.005279. PubMed DOI
Rossouw D, Botton GA. Resonant optical excitations in complementary plasmonic nanostructures. Opt. Express. 2012;20:6968–6973. doi: 10.1364/OE.20.006968. PubMed DOI
Yang HU, et al. Accessing the optical magnetic near-field through Babinet’s principle. ACS Photonics. 2014;1:894–899. doi: 10.1021/ph5001988. DOI
Ögüt B, et al. Hybridized metal slit eigenmodes as an illustration of Babinet’s principle. ACS Nano. 2011;5:6701–6706. doi: 10.1021/nn2022414. PubMed DOI
Schmidt F-P, et al. Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 2012;12:5780–5783. doi: 10.1021/nl3030938. PubMed DOI PMC
Schmidt FP, Ditlbacher H, Hofer F, Krenn JR, Hohenester U. Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett. 2014;14:4810–4815. doi: 10.1021/nl502027r. PubMed DOI PMC
Yankovich AB, et al. Multidimensional hybridization of dark surface plasmons. ACS Nano. 2017;11:4265–4274. doi: 10.1021/acsnano.7b01318. PubMed DOI
Madsen SJ, Esfandyarpour M, Brongersma ML, Sinclair R. Observing plasmon damping due to adhesion layers in gold nanostructures using electron energy loss spectroscopy. ACS Photonics. 2017;4:268–274. doi: 10.1021/acsphotonics.6b00525. PubMed DOI PMC
Rindzevicius T, et al. Nanohole plasmons in optically thin gold films. J. Phys. Chem. C. 2007;111:1207–1212. doi: 10.1021/jp065942q. DOI
Coenen T, Polman A. Optical properties of single plasmonic holes probed with local electron beam excitation. ACS Nano. 2014;8:7350–7358. doi: 10.1021/nn502469r. PubMed DOI
Sannomiya T, Saito H, Junesch J, Yamamoto N. Coupling of plasmonic nanopore pairs: facing dipoles attract each other. Light. Sci. Appl. 2016;5:e16146. doi: 10.1038/lsa.2016.146. PubMed DOI PMC
Schider G, et al. Plasmon dispersion relation of Au and Ag nanowires. Phys. Rev. B. 2003;68:155427. doi: 10.1103/PhysRevB.68.155427. DOI
Schmidt F-P, et al. Universal dispersion of surface plasmons in flat nanostructures. Nat. Commun. 2014;5:3604. doi: 10.1038/ncomms4604. PubMed DOI PMC
Strutt J. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Phil. Magaz. 1899;47:375–394. doi: 10.1080/14786449908621276. DOI
Zhou J, et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 2005;95:223902. doi: 10.1103/PhysRevLett.95.223902. PubMed DOI
Ritchie RH, Arakawa ET, Cowan JJ, Hamm RN. Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 1968;21:1530–1533. doi: 10.1103/PhysRevLett.21.1530. DOI
García de Abajo FJ, Kociak M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 2008;100:106804. doi: 10.1103/PhysRevLett.100.106804. PubMed DOI
Kociak M, Stéphan O. Mapping plasmons at the nanometer scale in an electron microscope. Chem. Soc. Rev. 2014;43:3865–3883. doi: 10.1039/C3CS60478K. PubMed DOI
Hohenester U, Ditlbacher H, Krenn JR. Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. 2009;103:106801. doi: 10.1103/PhysRevLett.103.106801. PubMed DOI
Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer US, New York, 2011).
Mitchell DRG. Determination of mean free path for energy loss and surface oxide film thickness using convergent beam electron diffraction and thickness mapping: a case study using si and p91 steel. J. Microsc. 2006;224:187–196. doi: 10.1111/j.1365-2818.2006.01690.x. PubMed DOI
Iakoubovskii K, Mitsuishi K, Nakayama Y, Furuya K. Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 2008;71:626–631. doi: 10.1002/jemt.20597. PubMed DOI
Křápek V, et al. Spatially resolved electron energy loss spectroscopy of crescent-shaped plasmonic antennas. Opt. Express. 2015;23:11855–11867. doi: 10.1364/OE.23.011855. PubMed DOI
Horák M, et al. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Reports. 2018;8:9640. doi: 10.1038/s41598-018-28037-1. PubMed DOI PMC
Johnson PB, Christy RW. Optical constants of the noble metals. Phys. Rev. B. 1972;6:4370–4379. doi: 10.1103/PhysRevB.6.4370. DOI
Plasmonic sensing using Babinet's principle