Characterization of a broad spectrum bacteriocin produced by Lactobacillus plantarum MXG-68 from Inner Mongolia traditional fermented koumiss
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
2018MS03060
Natural Sciences Foundation of Inner Mongolia Autonomous Region of China
BS403
Doctoral Research Start-up Fund of Inner Mongolia University for Nationalities
PubMed
30895557
DOI
10.1007/s12223-019-00697-0
PII: 10.1007/s12223-019-00697-0
Knihovny.cz E-resources
- Keywords
- Bacteriocin, Characterization, Lactobacillus plantarum, Response surface methodology, Screening,
- MeSH
- Anti-Bacterial Agents biosynthesis chemistry pharmacology MeSH
- Bacteriocins biosynthesis chemistry pharmacology MeSH
- Phylogeny MeSH
- Kinetics MeSH
- Culture Media MeSH
- Koumiss microbiology MeSH
- Lactobacillus plantarum chemistry classification physiology MeSH
- Molecular Weight MeSH
- Food Microbiology MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Amino Acid Sequence MeSH
- Protein Stability MeSH
- Staphylococcus drug effects MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- China MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacteriocins MeSH
- Culture Media MeSH
- RNA, Ribosomal, 16S MeSH
An agar well diffusion assay (AWDA) was used to isolate a high bacteriocin-producing strain with a broad spectrum of antibacterial activity, strain MXG-68, from Inner Mongolia traditional fermented koumiss. Lactobacillus plantarum MXG-68 was identified by morphological, biochemical, and physiological characteristics and 16S rDNA analysis. The production of antibacterial substance followed a growth-interrelated model, starting at the late lag phase of 4 h and arriving at a maximum value in the middle of the stationary phase at 24 h. Antibacterial activity was abolished or decreased in the presence of pepsin, chymotrypsin, trypsin, proteinase, and papain K. The results showed that antibacterial substances produced by L. plantarum MXG-68 were proteinaceous and could thus be classified as the bacteriocin, named plantaricin MXG-68. The molar mass of plantaricin MXG-68 was estimated to be 6.5 kDa, and the amino acid sequence of its N-terminal was determined to be VYGPAGIFNT. The mode of plantaricin MXG-68 action was determined to be bactericidal. Bacteriocin in cell-free supernatant (CFS) at pH 7 was stable at different temperatures (60 °C, 80 °C, 100 °C, 121 °C for 30 min; 4 °C and - 20 °C for 30 days), as well as at pH 2.0-10.0. Antibacterial activity maintained stable after treatment with organic solvents, surfactants, and detergents but increased in response to EDTA. Response surface methodology (RSM) revealed the optimum conditions of bacteriocin production in L. plantarum MXG-68, and the bacteriocin production in medium optimized by RSM was 26.10% higher than that in the basal MRS medium.
See more in PubMed
Int J Food Microbiol. 2009 Jun 30;132(2-3):117-26 PubMed
BMC Microbiol. 2015 Oct 02;15:196 PubMed
Food Chem. 2014 Dec 15;165:216-23 PubMed
Biocontrol Sci. 2012 Mar;17(1):1-16 PubMed
Appl Microbiol Biotechnol. 2000 Feb;53(2):159-66 PubMed
World J Microbiol Biotechnol. 2015 Jun;31(6):983-94 PubMed
Crit Rev Food Sci Nutr. 2016 Jun 10;56(8):1262-74 PubMed
Folia Microbiol (Praha). 2004;49(4):406-10 PubMed
Int J Food Microbiol. 2017 Mar 20;245:79-87 PubMed
Folia Microbiol (Praha). 2012 May;57(3):183-90 PubMed
Appl Biochem Biotechnol. 2014 Apr;172(7):3354-62 PubMed
AMB Express. 2012 Sep 10;2(1):48 PubMed
Korean J Food Sci Anim Resour. 2015;35(2):272-6 PubMed
AMB Express. 2018 Sep 27;8(1):153 PubMed
Microb Cell Fact. 2018 Aug 13;17(1):125 PubMed
Food Sci Biotechnol. 2017 Dec 12;27(3):695-703 PubMed
Appl Biochem Biotechnol. 2018 Apr;184(4):1106-1119 PubMed
Microb Cell Fact. 2014 Aug 29;13 Suppl 1:S3 PubMed
J Sci Food Agric. 2011 Feb;91(3):512-8 PubMed
Braz J Microbiol. 2016 Jul-Sep;47(3):757-63 PubMed
J Basic Microbiol. 2009 Jun;49(3):318-26 PubMed
World J Microbiol Biotechnol. 2012 Apr;28(4):1543-52 PubMed
J Food Sci Technol. 2018 Jul;55(7):2774-2785 PubMed
Folia Microbiol (Praha). 2012 Mar;57(2):99-105 PubMed
J Hazard Mater. 2007 Sep 5;148(1-2):83-90 PubMed
Int J Food Microbiol. 2005 Dec 15;105(3):389-98 PubMed
Microbiol Res. 2006;161(2):102-8 PubMed
J Gen Appl Microbiol. 2010 Jun;56(3):257-65 PubMed
Appl Microbiol Biotechnol. 2008 Jul;79(5):759-67 PubMed
J Agric Food Chem. 2013 Nov 27;61(47):11676-82 PubMed
J Food Sci Technol. 2018 Sep;55(9):3683-3692 PubMed
J Food Sci Technol. 2017 Sep;54(10):3268-3277 PubMed