Antiviral Activity of Uridine Derivatives of 2-Deoxy Sugars against Tick-Borne Encephalitis Virus
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
UMO-2015/19/D/NZ6/01717
Narodowe Centrum Nauki
PubMed
30901934
PubMed Central
PMC6471225
DOI
10.3390/molecules24061129
PII: molecules24061129
Knihovny.cz E-resources
- Keywords
- 2-deoxy sugars, antivirals, glycosylation inhibition, tick-borne encephalitis, uridine,
- MeSH
- Antiviral Agents chemistry pharmacology MeSH
- Deoxy Sugars chemistry pharmacology MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Viral Plaque Assay MeSH
- Protein Biosynthesis drug effects MeSH
- Uridine analogs & derivatives chemistry pharmacology MeSH
- Encephalitis Viruses, Tick-Borne drug effects physiology MeSH
- Dose-Response Relationship, Drug MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antiviral Agents MeSH
- Deoxy Sugars MeSH
- Uridine MeSH
Tick-borne encephalitis virus (TBEV) is a causative agent of tick-borne encephalitis (TBE), one of the most important human infections involving the central nervous system. Although effective vaccines are available on the market, they are recommended only in endemic areas. Despite many attempts, there are still no specific antiviral therapies for TBEV treatment. Previously, we synthesized a series of uridine derivatives of 2-deoxy sugars and proved that some compounds show antiviral activity against viruses from the Flaviviridae and Orthomyxoviridae families targeting the late steps of the N-glycosylation process, affecting the maturation of viral proteins. In this study, we evaluated a series of uridine derivatives of 2-deoxy sugars for their antiviral properties against two strains of the tick-borne encephalitis virus; the highly virulent TBEV strain Hypr and the less virulent strain Neudoerfl. Four compounds (2, 4, 10, and 11) showed significant anti-TBEV activity with IC50 values ranging from 1.4 to 10.2 µM and low cytotoxicity. The obtained results indicate that glycosylation inhibitors, which may interact with glycosylated membrane TBEV E and prM proteins, might be promising candidates for future antiviral therapies against TBEV.
Biotechnology Center Silesian University of Technology Krzywoustego 8 44 100 Gliwice Poland
Department of Virology Veterinary Research Institute Hudcova 70 CZ 62100 Brno Czech Republic
See more in PubMed
Dumpis U., Crook D., Oksi J. Tick-borne encephalitis. Clin. Infect. Dis. 1999;28:882–890. doi: 10.1086/515195. PubMed DOI
Füzik T., Formanová P., Růžek D., Yoshii K., Niedrig M., Plevka P. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 2018;9:436. doi: 10.1038/s41467-018-02882-0. PubMed DOI PMC
Lindquist L., Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–1871. doi: 10.1016/S0140-6736(08)60800-4. PubMed DOI
Kovalev S.Y., Mukhacheva T.A. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. Infect. Genet. Evol. 2017;55:159–165. doi: 10.1016/j.meegid.2017.09.014. PubMed DOI
Dai X., Shang G., Lu S., Yang J., Xu J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg. Microb. Infect. 2018;7:74. doi: 10.1038/s41426-018-0081-6. PubMed DOI PMC
Růžek D., Dobler G., Donoso Mantke O. Tick-borne encephalitis: Pathogenesis and clinical implications. Travel. Med. Infect. Dis. 2010;8:223–232. doi: 10.1016/j.tmaid.2010.06.004. PubMed DOI
Mantke O.D., Escadafal C., Niedrig M., Pfeffer M. Tick-borne encephalitis in Europe, 2007 to 2009. Euro. Surveill. 2011;16:19976. PubMed
Süss J. Tick-borne encephalitis 2010: Epidemiology, risk areas, and virus strains in Europe and Asia-an overview. Ticks Tick Borne Dis. 2011;2:2–15. doi: 10.1016/j.ttbdis.2010.10.007. PubMed DOI
Steffen R. Epidemiology of tick-borne encephalitis (TBE) in international travellers to Western/Central Europe and conclusions on vaccination recommendations. J. Travel Med. 2016;23:1–10. PubMed
Jääskeläinen A.E., Tonteri E., Sironen T., Pakarinen L., Vaheri A., Vapalahti O. European Subtype Tick-borne Encephalitis Virus in Ixodes persulcatus Ticks. Emerg. Infect. Dis. 2011;17:323–325. doi: 10.3201/eid1702.101487. PubMed DOI PMC
Mansfield K.L., Johnson N., Phipps L.P., Stephenson J.R., Fooks A.R., Solomon T. Tick-borne encephalitis virus-A review of an emerging zoonosis. J. Gen. Virol. 2009;90:1781–1794. doi: 10.1099/vir.0.011437-0. PubMed DOI
Ruzek D., Županc T.A., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. PubMed DOI
Taba P., Schmutzhard E., Forsberg P., Lutsar I., Ljøstad U., Mygland Å., Levchenko I., Strle F., Steiner I. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur. J. Neurol. 2017;24:1214-e61. doi: 10.1111/ene.13356. PubMed DOI
Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. PubMed DOI
Yoshii K., Yanagihara N., Ishizuka M., Sakai M., Kariwa H. N-linked glycan in tick-borne encephalitis virus envelope protein affects viral secretion in mammalian cells, but not in tick cells. J. Gen. Virol. 2013;94:2249–2258. doi: 10.1099/vir.0.055269-0. PubMed DOI
Krol E., Wandzik I., Krejmer-Rabalska M., Szewczyk B. Biological Evaluation of Uridine Derivatives of 2-Deoxy Sugars as Potential Antiviral Compounds against Influenza A Virus. Int. J. Mol. Sci. 2017;18:1700. doi: 10.3390/ijms18081700. PubMed DOI PMC
Wandzik I., Bieg T., Czaplicka M. Synthesis of 2-deoxy-hexopyranosyl derivatives of uridine as donor substrate analogues for glycosyltransferases. Bioorgan. Chem. 2009;37:211–216. doi: 10.1016/j.bioorg.2009.08.001. PubMed DOI
Wandzik I., Bieg T., Kadela M. Simultaneous removal of benzyl and benzyloxycarbonyl protective groups in 5’-O-(2-deoxy-alpha-d-glucopyranosyl)uridine by catalytic transfer hydrogenolysis. Nucleosides Nucleotides Nucleic Acids. 2008;27:1250–1256. doi: 10.1080/15257770802458303. PubMed DOI
Paszkowska J., Kania B., Wandzik I. Evaluation of the Lipophilicty of Selected Uridine Derivatives by Use of Rp-Tlc, Shake-Flask, and Computational Methods. J. Liq. Chromatogr. Relat. Technol. 2012;35:1202–1212. doi: 10.1080/10826076.2011.619030. DOI
Krol E., Wandzik I., Szeja W., Grynkiewicz G., Szewczyk B. In vitro antiviral activity of some uridine derivatives of 2-deoxy sugars against classical swine fever virus. Antivir. Res. 2010;86:154–162. doi: 10.1016/j.antiviral.2010.02.314. PubMed DOI
Krol E., Wandzik I., Pastuch-Gawolek G., Szewczyk B. Anti-Hepatitis C Virus Activity of Uridine Derivatives of 2-Deoxy Sugars. Molecules. 2018;23:1547. doi: 10.3390/molecules23071547. PubMed DOI PMC
Krol E., Wandzik I., Gromadzka B., Nidzworski D., Rychlowska M., Matlacz M., Tyborowska J., Szewczyk B. Anti-influenza A virus activity of uridine derivatives of 2-deoxy sugars. Antivir. Res. 2013;100:90–97. doi: 10.1016/j.antiviral.2013.07.014. PubMed DOI
Heinz F.X., Allison S.L. Structures and mechanisms in flavivirus fusion. Adv. Virus Res. 2000;55:231–269. PubMed PMC
Lorenz I.C., Allison S.L., Heinz F.X., Helenius A. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J. Virol. 2002;76:5480–5491. doi: 10.1128/JVI.76.11.5480-5491.2002. PubMed DOI PMC
Goto A., Yoshii K., Obara M., Ueki T., Mizutani T., Kariwa H., Takashima I. Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine. 2005;23:3043–3052. doi: 10.1016/j.vaccine.2004.11.068. PubMed DOI