• This record comes from PubMed

Variability in the Drug Response of M4 Muscarinic Receptor Knockout Mice During Day and Night Time

. 2019 ; 10 () : 237. [epub] 20190318

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Mice are nocturnal animals. Surprisingly, the majority of physiological/pharmacological studies are performed in the morning, i.e., in the non-active phase of their diurnal cycle. We have shown recently that female (not male) mice lacking the M4 muscarinic receptors (MR, M4KO) did not differ substantially in locomotor activity from their wild-type counterparts (C57Bl/6Tac) during the inactive period. Increased locomotion has been shown in the active phase of their diurnal cycle. We compared the effects of scopolamine, oxotremorine, and cocaine on locomotor response, hypothermia and spontaneous behavior in the open field arena in the morning (9:00 AM) and in the evening (9:00 PM) in WT and in C57Bl/6NTac mice lacking the M4 MR. Furthermore, we also studied morning vs. evening densities of muscarinic, GABAA, D1-like, D2-like, NMDA and kainate receptors using autoradiography in the motor, somatosensory and visual cortex and in the striatum, thalamus, hippocampus, pons, and medulla oblongata. At 9:00 AM, scopolamine induced an increase in motor activity in WT and in M4KO, yet no significant increase was observed at 9:00 PM. Oxotremorine induced hypothermic effects in both WT and M4KO. Hypothermic effects were more evident in WT than in M4KO. Hypothermia in both cases was more pronounced at 9:00 AM than at 9:00 PM. Cocaine increased motor activity when compared to saline. There was no difference in behavior in the open field between WT and M4KO when tested at 9:00 AM; however, at 9:00 PM, activity of M4KO was doubled in comparison to that of WT. Both WT and KO animals spent less time climbing in their active phase. Autoradiography revealed no significant morning vs. evening difference. Altogether, our results indicate the necessity of comparing morning vs. evening drug effects.

See more in PubMed

Alves-Amaral G., Pires-Oliveira M., Andrade-Lopes A. L., Chiavegatti T., Godinho R. O. (2010). Gender-related differences in circadian rhythm of rat plasma acetyl- and butyrylcholinesterase: effects of sex hormone withdrawal. Chem. Biol. Interact. 186 9–15. 10.1016/j.cbi.2010.04.002 PubMed DOI

Anisman H., Cygan D. (1975). Central effects of scopolamine and (+)-amphetamine on locomotor activity: interaction with strain and stress variables. Neuropharmacology 14 835–840. 10.1016/0028-3908(75)90111-2 PubMed DOI

Ballesta A., Innominato P. F., Dallmann R., Rand D. A., Lévi F. A. (2017). Systems Chronotherapeutics. Pharmacol. Rev. 69 161–199. 10.1124/pr.116.013441 PubMed DOI PMC

Bina K. G., Rusak B., Wilkinson M. (1998). Daily variation of muscarinic receptors in visual cortex but not suprachiasmatic nucleus of Syrian hamsters. Brain Res. 797 143–153. 10.1016/S0006-8993(98)00374-6 PubMed DOI

Bymaster F. P., Carter P. A., Zhang L., Falcone J. F., Stengel P. W., Cohen M. L., et al. (2001). Investigations into the physiological role of muscarinic M2 and M4 muscarinic and M4 receptor subtypes using receptor knockout mice. Life Sci. 68 2473–2479. 10.1016/S0024-3205(01)01041-4 PubMed DOI

Bymaster F. P., Heath I., Hendrix J. C., Shannon H. E. (1993). Comparative behavioral and neurochemical activities of cholinergic antagonists in rats. J. Pharmacol. Exp. Ther. 267 16–24. PubMed

Caine S. B., Thomsen M., Gabriel K. I., Berkowitz J. S., Gold L. H., Koob G. F., et al. (2007). Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. J. Neurosci. 27 13140–13150. 10.1523/JNEUROSCI.2284-07.2007 PubMed DOI PMC

Castillo-Ruiz A., Nunez A. A. (2007). Cholinergic projections to the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Brain Res. 1151 91–101. 10.1016/j.brainres.2007.03.010 PubMed DOI

Crespo J. A., Sturm K., Saria A., Zernig G. (2006). Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement. J. Neurosci. 26 6004–6010. 10.1523/JNEUROSCI.4494-05.2006 PubMed DOI PMC

Dall C., Weikop P., Dencker D., Molander A. C., Wörtwein G., Conn P. J., et al. (2017). Muscarinic receptor M4 positive allosteric modulators attenuate central effects of cocaine. Drug Alcohol Depend. 176 154–161. 10.1016/j.drugalcdep.2017.03.014 PubMed DOI PMC

Dallmann R., Brown S. A., Gachon F. (2014). Chronopharmacology: new Insights and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 54 339–361. 10.1146/annurev-pharmtox-011613-135923 PubMed DOI PMC

Dencker D., Thomsen M., Wörtwein G., Weikop P., Cui Y., Jeon J., et al. (2012). Muscarinic acetylcholine receptor subtypes as potential drug targets for the treatment of schizophrenia, drug abuse, and Parkinson’s Disease. ACS Chem. Neurosci. 3 80–89. 10.1021/cn200110q PubMed DOI PMC

Farar V., Mohr F., Legrand M., D’incamps B. L., Cendelin J., Leroy J., et al. (2012). Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J. Neurochem. 122 1065–1080. 10.1111/j.1471-4159.2012.07856.x PubMed DOI

Giros B., Jaber M., Jones S. R., Wightman R. M., Caron M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379 606–612. 10.1038/379606a0 PubMed DOI

Gomeza J., Zhang L., Kostenis E., Felder C., Bymaster F., Brodkin J., et al. (1999). Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 96 10483–10488. 10.1073/pnas.96.18.10483 PubMed DOI PMC

Hikida T., Kaneko S., Isobe T., Kitabatake Y., Watanabe D., Pastan I., et al. (2001). Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A. 98 13351–13354. 10.1073/pnas.231488998 PubMed DOI PMC

Hut R. A., Van der Zee E. A. (2011). The cholinergic system, circadian rhythmicity, and time memory. Behav. Brain Res. 221 466–480. 10.1016/j.bbr.2010.11.039 PubMed DOI

Lomax P., Jenden D. J. (1966). Hypothermia following systematic and intracerebral injection of oxotremorine in the rat. Int. J. Neuropharmacol. 5 353–359. 10.1016/0028-3908(66)90013-X PubMed DOI

McDermott C., Kelly J. P. (2008). Comparison of the behavioural pharmacology of the Lister-Hooded with 2 commonly utilised albino rat strains. Prog. Neuro Psychopharmacol. Biol. Psychiatry 32 1816–1823. 10.1016/j.pnpbp.2008.08.004 PubMed DOI

Popoviæ N., Baño-Otálora B., Rol M. Á, Caballero-Bleda M., Madrid J. A., Popoviæ M. (2009). Aging and time-of-day effects on anxiety in female Octodon degus. Behav. Brain Res. 200 117–121. 10.1016/j.bbr.2009.01.001 PubMed DOI

Probst B., Eisermann K., Stohr W. (1987). Diurnal patterns of scent-marking, serum testosterone concentration and heart rate in male Mongolian gerbils. Physiol. Behav. 41 543–547. 10.1016/0031-9384(87)90309-X PubMed DOI

Roedel A., Storch C., Holsboer F., Ohl F. (2006). Effects of light or dark phase testing on behavioural and cognitive performance in DBA mice. Lab. Anim. 40 371–381. 10.1258/002367706778476343 PubMed DOI

Sleipness E. P., Sorg B. A., Jansen H. T. (2005). Time of day alters long-term sensitization to cocaine in rats. Brain Res. 1065 132–137. 10.1016/j.brainres.2005.10.017 PubMed DOI

Sleipness E. P., Sorg B. A., Jansen H. T. (2007). Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus. Brain Res. 1129 34–42. 10.1016/j.brainres.2006.10.063 PubMed DOI

Stanford S. C. (2007). The open field test: reinventing the wheel. J. Psychopharmacol. 21 134–135. 10.1177/0269881107073199 PubMed DOI

Sullivan D., Pinsonneault J. K., Papp A. C., Zhu H., Lemeshow S., Mash D. C., et al. (2013). Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal cocaine abuse: a gene-gene-environment interaction. Transl. Psychiatry 3:e222. 10.1038/tp.2012.146 PubMed DOI PMC

Thomsen M., Han D. D., Gu H. H., Caine S. B. (2009). Lack of cocaine self-administration in mice expressing a cocaine-insensitive dopamine transporter. J. Pharmacol. Exp. Ther. 331 204–211. 10.1124/jpet.109.156265 PubMed DOI PMC

Thornburg J. E., Moore K. E. (1973). Inhibition of anticholinergic drug-induced locomotor stimulation in mice by α-methyltyrosine. Neuropharmacology 12 1179–1185. 10.1016/0028-3908(73)90075-0 PubMed DOI

Valuskova P., Farar V., Forczek S., Krizova I., Myslivecek J. (2018a). Autoradiography of 3H-pirenzepine and 3H-AFDX-384 in Mouse Brain Regions: possible Insights into M1, M2, and M4 Muscarinic Receptors Distribution. Front. Pharmacol. 9:124. 10.3389/fphar.2018.00124 PubMed DOI PMC

Valuskova P., Forczek S. T., Farar V., Myslivecek J. (2018b). The deletion of M4 muscarinic receptors increases motor activity in females in the dark phase. Brain Behav. 8:e01057. 10.1002/brb3.1057 PubMed DOI PMC

Van de Weerd H., Bulthuis R., Bergman A. F., Schlingmann F., Tolboom J., Van Loo P. L., et al. (2001). Validation of a new system for the automatic registration of behaviour in mice and rats. Behav. Process. 53 11–20. 10.1016/S0376-6357(00)00135-2 PubMed DOI

Vaughan R. A., Foster J. D. (2013). Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol. Sci. 34 489–496. 10.1016/j.tips.2013.07.005 PubMed DOI PMC

Witten I. B., Lin S. C., Brodsky M., Prakash R., Diester I., Anikeeva P., et al. (2010). Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330 1677–1681. 10.1126/science.1193771 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...