• This record comes from PubMed

On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments

. 2019 Apr 17 ; 8 (4) : . [epub] 20190417

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Reactive oxygen species (ROS) have been recognized as important signaling compoundsof major importance in a number of developmental and physiological processes in plants. Theexistence of cellular compartments enables efficient redox compartmentalization and ensuresproper functioning of ROS-dependent signaling pathways. Similar to other organisms, theproduction of individual ROS in plant cells is highly localized and regulated bycompartment-specific enzyme pathways on transcriptional and post-translational level. ROSmetabolism and signaling in specific compartments are greatly affected by their chemicalinteractions with other reactive radical species, ROS scavengers and antioxidant enzymes. Adysregulation of the redox status, as a consequence of induced ROS generation or decreasedcapacity of their removal, occurs in plants exposed to diverse stress conditions. During stresscondition, strong induction of ROS-generating systems or attenuated ROS scavenging can lead tooxidative or nitrosative stress conditions, associated with potential damaging modifications of cellbiomolecules. Here, we present an overview of compartment-specific pathways of ROS productionand degradation and mechanisms of ROS homeostasis control within plant cell compartments.

See more in PubMed

Gabaldón T., Pittis A.A. Origin and evolution of metabolic sub-cellular compartmentalization in eukaryotes. Biochimie. 2015;119:262–268. doi: 10.1016/j.biochi.2015.03.021. PubMed DOI PMC

Go Y.M., Jones D.P. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta. 2008;1780:1273–1290. doi: 10.1016/j.bbagen.2008.01.011. PubMed DOI PMC

Dey S., Sidor A., O’Rourke B. Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes. J. Biol. Chem. 2016;291:11185–11197. doi: 10.1074/jbc.M116.726968. PubMed DOI PMC

Kaludercic N., Deshwal S., Di Lisa F. Reactive oxygen species and redox compartmentalization. Front. Physiol. 2014;5:285. doi: 10.3389/fphys.2014.00285. PubMed DOI PMC

D’Autréaux B., Toledano M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007;8:813–824. doi: 10.1038/nrm2256. PubMed DOI

Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC

Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI

Schieber M., Chandel N.S. ROS function in redox signalling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC

Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145:dev164376. doi: 10.1242/dev.164376. PubMed DOI

Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90:856–867. doi: 10.1111/tpj.13299. PubMed DOI

Dreyer A., Dietz K.J. Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants. 2018;7:169. doi: 10.3390/antiox7110169. PubMed DOI PMC

Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI

Eckardt N.A. The Plant Cell Reviews Plant Immunity: Receptor-Like Kinases, ROS-RLK Crosstalk, Quantitative Resistance, and the Growth/Defense Trade-Off. Plant Cell. 2017;29:601–602. doi: 10.1105/tpc.17.00289. PubMed DOI PMC

Vaahtera L., Brosché M., Wrzaczek M., Kangasjärvi J. Specificity in ROS signalling and transcripts signatures. Antioxid. Redox Signal. 2014;21:1422–1441. doi: 10.1089/ars.2013.5662. PubMed DOI PMC

Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot. 2015;109:212–228. doi: 10.1016/j.envexpbot.2014.06.021. DOI

Richards S.L., Wilkins K.A., Swarbreck S.M., Anderson A.A., Habib N., Smith A.G., McAinsh M., Davies J.M. The hydroxyl radical in plants: From seed to seed. J. Exp. Bot. 2015;66:37–46. doi: 10.1093/jxb/eru398. PubMed DOI

Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plan Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9. PubMed DOI

Skovsen E., Snyder J.W., Lambert J.D.C., Ogilby P.R. Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. Lett. 2005;109:8570–8573. doi: 10.1021/jp051163i. PubMed DOI

Dogra V., Rochaix J.D., Kim C. Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: An emerging perspective. Plant Cell Environ. 2018;41:1727–1738. doi: 10.1111/pce.13332. PubMed DOI

Prasad A., Sedlářová M., Kale R.S., Pospíšil P. Lipoxygenase in singlet oxygen generation as a response to wounding: In vivo imaging in Arabidopsis thaliana. Sci. Rep. 2017;7:9831. doi: 10.1038/s41598-017-09758-1. PubMed DOI PMC

Krieger-Liszkay A., Fufezan C., Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 2008;98:551–564. doi: 10.1007/s11120-008-9349-3. PubMed DOI

Halliwell B. Reactive species and antioxidants. Redox biology is fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073. PubMed DOI PMC

Antunes F., Brito P.M. Quantitative biology of hydrogen peroxide signaling. Redox Biol. 2017;13:1–7. doi: 10.1016/j.redox.2017.04.039. PubMed DOI PMC

Rampon C., Volovitch M., Joliot A., Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants. 2018;7:159. doi: 10.3390/antiox7110159. PubMed DOI PMC

Tamma G., Valenti G., Grossini E., Donnini S., Marino A., Marinelli R.A., Calamita G. Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends. Oxidative Med. Cell. Longev. 2018;2018:1501847. doi: 10.1155/2018/1501847. PubMed DOI PMC

Nordzieke D.E., Medraño-Fernandez I. The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants. 2018;7:168. doi: 10.3390/antiox7110168. PubMed DOI PMC

Smirnoff N., Arnaud D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019;221:1197–1214. doi: 10.1111/nph.15488. PubMed DOI

Jacoby R.P., Millar A.H., Taylor N.L. Mitochondrial Biochemistry: Stress Responses and Roles in Stress Alleviation. In: Roberts J.A., editor. Annual Plant Reviews Online. Wiley Online Library; New York, NY, USA: 2018.

Mignolet-Spruyt L., Xu E., Idänheimo N., Hoeberichts F.A., Mühlenbock P., Brosché M., Van Breusegem F., Kangasjärvi J. Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 2016;67:3831–3844. doi: 10.1093/jxb/erw080. PubMed DOI

Srivastava A., Redij T., Sharma B., Suprasanna P. Interaction between Hormone and Redox Signaling in Plants: Divergent Pathways and Convergent Roles. In: Pandey G.K., editor. Mechanism of Plant Hormone Signaling under Stress. Wiley Online Library; New York, NY, USA: 2017.

Jajic I., Sarna T., Strzalka K. Senescence, Stress, and Reactive Oxygen Species. Plants. 2015;4:393–411. doi: 10.3390/plants4030393. PubMed DOI PMC

Keegstra K. Plant Cell Walls. Plant Physiol. 2010;154:483–486. doi: 10.1104/pp.110.161240. PubMed DOI PMC

Höfte H. The Yin and Yang of Cell Wall Integrity Control: Brassinosteroid and FERONIA Signaling. Plant Cell Physiol. 2015;56:224–231. doi: 10.1093/pcp/pcu182. PubMed DOI

Qi J., Wang J., Gong Z., Zhou J.M. Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 2017;38:92–100. doi: 10.1016/j.pbi.2017.04.022. PubMed DOI

Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014;35:345–351. doi: 10.1016/j.it.2014.05.004. PubMed DOI

Kimura S., Waszczak C., Hunter K., Wrzaczek M. Bound by Fate: The Role of Reactive Oxygen Species in Receptor-Like Kinase Signaling. Plant Cell. 2017;29:638–654. doi: 10.1105/tpc.16.00947. PubMed DOI PMC

Schmidt R., Kunkowska A.B., Schippers J.H. Role of Reactive Oxygen Species during Cell Expansion in Leaves. Plant Physiol. 2016;172:2098–2106. doi: 10.1104/pp.16.00426. PubMed DOI PMC

Novaković L., Guo T., Bacic A., Sampathkumar A., Johnson K.L. Hitting the Wall—Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. Plants. 2018;7:89. doi: 10.3390/plants7040089. PubMed DOI PMC

Lazzarotto F., Turchetto-Zolet A.C., Margis-Pinheiro M. Revisiting the Non-Animal Peroxidase Superfamily. Trends Plant Sci. 2015;20:807–813. doi: 10.1016/j.tplants.2015.08.005. PubMed DOI

Mathé C., Barre A., Jourda C., Dunand C. Evolution and expression of class III peroxidases. Arch. Biochem. Biophys. 2010;500:58–65. doi: 10.1016/j.abb.2010.04.007. PubMed DOI

Berglund G.I., Carlsson G.H., Smith A.T., Szöke H., Henriksen A., Hajdu J. The catalytic pathway of horseradish peroxidase at high resolution. Nature. 2002;417:463–468. doi: 10.1038/417463a. PubMed DOI

Lüthje S., Martinez-Cortes T. Membrane-Bound Class III Peroxidases: Unexpected Enzymes with Exciting Functions. Int. J. Mol. Sci. 2018;19:2876. doi: 10.3390/ijms19102876. PubMed DOI PMC

O´Brien J.A., Daudi A., Finch P., Butt V.S., Whitelegge J.P., Souda P., Ausubel F.M., Bolwell G.P. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 2012;158:2013–2027. doi: 10.1104/pp.111.190140. PubMed DOI PMC

Francoz E., Ranocha P., Nguyen-Kim H., Jamet E., Burlat V., Dunand C. Roles of cell wall peroxidases in plant development. Phytochemistry. 2015;112:15–21. doi: 10.1016/j.phytochem.2014.07.020. PubMed DOI

Veitch N.C. Structural determinants of plant peroxidase function. Phytochem. Rev. 2004;3:3–18. doi: 10.1023/B:PHYT.0000047799.17604.94. DOI

Shigeto J., Tsutsumi Y. Diverse functions and reactions of class III peroxidases. New Phytol. 2016;209:1395–1402. doi: 10.1111/nph.13738. PubMed DOI

Dennes L., McKenna J.F., Segonzac C., Wormit A., Madhou P., Bennet M., Mansfield J., Zipfel C., Hamann T. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 2011;156:1364–1374. doi: 10.1104/pp.111.175737. PubMed DOI PMC

Survila M., Davidsson P.R., Pennanen V., Kariola T., Broberg M., Sipari N., Heino P., Palva E.T. Peroxidase-Generated Apoplastic ROS Impair Cuticle Integrity and Contribute to DAMP-Elicited Defenses. Front. Plant Sci. 2016;23:1945. doi: 10.3389/fpls.2016.01945. PubMed DOI PMC

Kärkönen A., Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry. 2015;112:22–32. doi: 10.1016/j.phytochem.2014.09.016. PubMed DOI

Foyer G., Noctor C.F. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol. 2016;171:1581–1592. PubMed PMC

Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI

Ghuge S.A., Tisi A., Carucci A., Rodrigues-Pousada R.A., Franchi S., Tavladoraki P., Angelini R., Cona A. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions. Plants. 2015;4:489–504. doi: 10.3390/plants4030489. PubMed DOI PMC

Tavladoraki P., Cona A., Angelini R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. Front. Plant Sci. 2016;7:824. doi: 10.3389/fpls.2016.00824. PubMed DOI PMC

Chen D., Shao Q., Yin L., Younis A., Zheng B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front. Plant Sci. 2019;9:1945. doi: 10.3389/fpls.2018.01945. PubMed DOI PMC

Cona A., Rea G., Angelini R., Federico R., Tavladoraki P. Functions of amine oxidases in plant development and defence. Trend Plant Sci. 2006;11:80–88. doi: 10.1016/j.tplants.2005.12.009. PubMed DOI

Pei Z.M., Murata Y., Benning G., Thomine S. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000;406:731–734. doi: 10.1038/35021067. PubMed DOI

Kwak J.M., Mori I.C., Pei Z.M., Leonhardt N., Torres M.A., Dangl J.L., Schroeder J.I. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signalling in Arabidopsis. EMBO J. 2003;22:2623–2633. doi: 10.1093/emboj/cdg277. PubMed DOI PMC

Davidson R.M., Reeves P.A., Manosalva P.M., Leach J.E. Germins: A diverse protein family important for crop improvement. Plant Sci. 2009;177:499–510. doi: 10.1016/j.plantsci.2009.08.012. DOI

Zhang X.Y., Nie Z.H., Wang W.J., Leung D.W., Xu D.G., Chen B.L., Liu E.E. Relationship between disease resistance and rice oxalate oxidases in transgenic rice. PLoS ONE. 2013;8:e78348. doi: 10.1371/journal.pone.0078348. PubMed DOI PMC

Berniers F., Berna A. Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly? Plant Physiol. Biochem. 2001;39:545–554. doi: 10.1016/S0981-9428(01)01285-2. DOI

Suzuki N., Miller G., Morales J., Shulaev V., Torres M.A., Mittler R. Respiratory burst oxidases: The engines of ROS signaling. Curr. Opin. Plant Biol. 2001;14:691–699. doi: 10.1016/j.pbi.2011.07.014. PubMed DOI

Sagi M., Fluhr R. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 2006;141:336–340. doi: 10.1104/pp.106.078089. PubMed DOI PMC

Nühse T.S., Bottrill A.R., Jones A.M.E., Peck S.C. Quantitive phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanism of pnat innate immune responses. Plant J. 2007;51:931–940. doi: 10.1111/j.1365-313X.2007.03192.x. PubMed DOI PMC

Kadota Y., Shirasu K., Zipfel C. Regulation of the NADPH Oxidase RBOHD During Plant Immunity. Plant Cell Physiol. 2015;56:1472–1480. doi: 10.1093/pcp/pcv063. PubMed DOI

Hao H., Fan L., Chen T., Li R., Li X., He Q., Botella M.A., Lin J. Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plan Cell. 2014;26:1729–1745. doi: 10.1105/tpc.113.122358. PubMed DOI PMC

Noirot E., Lherminier J., Robert F., Moricová P., Kieu K., Leborgne-Castel N., Simon-Plas F., Bouhidel K. Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein. J. Exp. Bot. 2014;65:5011–5022. doi: 10.1093/jxb/eru265. PubMed DOI PMC

Torres M.A., Onouchi H., Hamada S., Machida C., Hammond-Kosack K.E., Jones J.D.G. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox) Plant J. 1998;14:365–370. doi: 10.1046/j.1365-313X.1998.00136.x. PubMed DOI

Ogasawara Y., Kaya H., Hiaroka G., Yumoto F., Kimura S., Kadota Y., Hishinuma H., Senzaki E., Yamagoe S., Nagata K., et al. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 2008;283:8885–8892. doi: 10.1074/jbc.M708106200. PubMed DOI

Kimura S., Kaya H., Kawarazaki T., Hiraoka G., Senzaki G., Michikawa M., Kuchitsu K. Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidase and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim. Biophys. Acta. 2012;1823:398–405. doi: 10.1016/j.bbamcr.2011.09.011. PubMed DOI

Asai S., Ichikawa T., Nomura H., Kobayashi M., Kamiyoshihara Y., Mori H., Kadota Y., Zipfel C., Jones J.D.G., Yoshioka H. The variable domain of plant calcium-dependent protein kinase (CDPK) confers subcellular localization and substrate recognition for NADPH oxidase. J. Biol. Chem. 2013;288:14332–14340. doi: 10.1074/jbc.M112.448910. PubMed DOI PMC

Ogawa K., Kanematsu S., Asada K. Generation of superoxide anion and localization of CuZn superoxide dismutase in the vascular tissue of spinach hypocotyls: Their association with lignification. Plant Cell Physiol. 1997;38:1118–1126. doi: 10.1093/oxfordjournals.pcp.a029096. PubMed DOI

Koffler B.E., Bloem E., Zellnig G., Zechmann B. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis. Micron. 2013;45:119–128. doi: 10.1016/j.micron.2012.11.006. PubMed DOI PMC

Booker F.L., Burkey K.O., Jones A.M. Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L. Plant Cell Environ. 2012;35:1456–1466. doi: 10.1111/j.1365-3040.2012.02502.x. PubMed DOI PMC

Tran D., Kadono T., Molas M.L., Errakhi R., Briand J., Biligui B., Kawano T., Bouteau F. A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells. Plant Cell Environ. 2013;36:569–578. doi: 10.1111/j.1365-3040.2012.02596.x. PubMed DOI

Zechmann B. Compartment-Specific Importance of Ascorbate During Environmental Stress in Plants. Antioxid. Redox Signal. 2017;29:1488–1501. doi: 10.1089/ars.2017.7232. PubMed DOI

Tripathy B.C., Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 2012;7:1621–1633. doi: 10.4161/psb.22455. PubMed DOI PMC

Yesbergenova Z., Yang G., Oron E., Soffer D., Fluhr R., Sagi M. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J. 2005;42:862–876. doi: 10.1111/j.1365-313X.2005.02422.x. PubMed DOI

Yergaliyev T.M., Nurbekova Z., Mukiyanova G., Akbassova A., Sutula M., Zhangazin S., Bari A., Tleukulova Z., Shamekova M., Masalimov Z.K., et al. The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection. Plant Physiol. Biochem. 2016;109:36–44. doi: 10.1016/j.plaphy.2016.09.001. PubMed DOI

Srivastava S., Brychkova G., Yarmolinsky D., Soltabayeva A., Samani T., Sagi M. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification. Plant Physiol. 2017;173:1977–1997. doi: 10.1104/pp.16.01939. PubMed DOI PMC

Ma X., Wang W., Bittner F., Schmidt N., Berkey R., Zhang L., King H., Zhang Y., Feng J., Wen Y., et al. Dual and Opposing Roles of Xanthine Dehydrogenase in Defense-Associated Reactive Oxygen Species Metabolism in Arabidopsis. Plant Cell. 2016;28:1108–1126. doi: 10.1105/tpc.15.00880. PubMed DOI PMC

Van Breusegem F., Bailey-Serres J., Mittler R. Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 2008;147:978–984. doi: 10.1104/pp.108.122325. PubMed DOI PMC

Schmitt F.J., Renger G., Friedrich T., Kreslavski V.D., Zharmukhamedov S.K., Los D.A., Kuznetsov V.V., Allakhverdiev S.I. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim. Biophys. Acta. 2014;1837:835–848. doi: 10.1016/j.bbabio.2014.02.005. PubMed DOI

Cezary W., Carmody M., Kangasjärvi J. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 2018;69:209–236. PubMed

Navrot N., Rouhier N., Gelhaye E., Jacquot J.P. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 2007;129:185–195. doi: 10.1111/j.1399-3054.2006.00777.x. DOI

Morgan M.J., Lehmann M., Schwarzländer M., Baxter C.J., Sienkiewicz-Porzucek A., Williams T.C., Schauer N., Fernie A.R., Fricker M.D., Ratcliffe R.G., et al. Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol. 2008;147:101–114. doi: 10.1104/pp.107.113613. PubMed DOI PMC

Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;47:1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC

Braidot E., Petrussa E., Vianello A., Macri F. Hydrogen peroxide generation by higher plant mitochondria oxidizing complex I or complex II substrates. FEBS Lett. 1999;451:347–350. doi: 10.1016/S0014-5793(99)00616-X. PubMed DOI

Umbach A.L., Fiorani F., Siedow J.N. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol. 2005;139:1806–1820. doi: 10.1104/pp.105.070763. PubMed DOI PMC

Gleason C., Huang S., Thatcher L.F., Foley R.C., Anderson C.R., Carroll A.J., Millar H.A., Singh K.B. Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc. Natl. Acad. Sci. USA. 2011;108:10768–10773. doi: 10.1073/pnas.1016060108. PubMed DOI PMC

Huang S., Van Aken O., Schwarzländer M., Belt K., Millar A.H. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiol. 2016;171:1551–1559. doi: 10.1104/pp.16.00166. PubMed DOI PMC

Šírová J., Sedlářová M., Piterková J., Luhová L., Petřivalský M. The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci. 2011;181:560–572. doi: 10.1016/j.plantsci.2011.03.014. PubMed DOI

Vanlerberghe G.C. Alternative oxidase: A mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int. J. Mol. Sci. 2013;14:6805–6847. doi: 10.3390/ijms14046805. PubMed DOI PMC

Barreto P., Okura V.K., Neshich I.A., Maia Ide G., Arruda P. Overexpression of UCP1 in tobacco induces mitochondrial biogenesis and amplifies a broad stress response. BMC Plant Biol. 2014;14:144. doi: 10.1186/1471-2229-14-144. PubMed DOI PMC

Barreto P., Yassitepe J., Wilson Z.A., Arruda P. Mitochondrial Uncoupling Protein 1 Overexpression Increases Yield in Nicotiana tabacum under Drought Stress by Improving Source and Sink Metabolism. Front. Plant Sci. 2017;8:1836. doi: 10.3389/fpls.2017.01836. PubMed DOI PMC

Triantaphylidès C., Havaux M. Singlet oxygen in plants: Production, detoxification and signaling. Trends Plant Sci. 2009;14:219–228. doi: 10.1016/j.tplants.2009.01.008. PubMed DOI

Roach T., Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 2014;15:351–362. doi: 10.2174/1389203715666140327105143. PubMed DOI PMC

Ramel F., Birtic S., Cuiné S., Triantaphylides C., Ravanat J.L., Havaux M. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol. 2012;158:1268–1287. doi: 10.1104/pp.111.182394. PubMed DOI PMC

Asada K. The water–water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:601–639. doi: 10.1146/annurev.arplant.50.1.601. PubMed DOI

Pospíšil P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. Front. Plant Sci. 2016;7:1950. doi: 10.3389/fpls.2016.01950. PubMed DOI PMC

Noctor G., Arisi A.C.M., Jouanin L., Foyer C.H. Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J. Exp. Bot. 1999;50:1157–1167. doi: 10.1093/jxb/50.336.1157. DOI

Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 2000;57:779–795. doi: 10.1007/s000180050041. PubMed DOI PMC

Foyer C.H., Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta. 1976;133:21–25. doi: 10.1007/BF00386001. PubMed DOI

Foyer C.H., Noctor G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011;155:2–18. doi: 10.1104/pp.110.167569. PubMed DOI PMC

Del Río L.A., Corpas F.J., Sandalio L.M., Palma J.M., Gómez M., Barroso J.B. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 2002;53:1255–1272. doi: 10.1093/jxb/53.372.1255. PubMed DOI

Noctor G., Foyer C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:249–279. doi: 10.1146/annurev.arplant.49.1.249. PubMed DOI

Romero-Puertas M.C., Corpas F.J., Sandalio L.M., Leterrier M., Rodriguez-Serrano M., del Río L.A., Palma J.M. Glutathione reductase from pea leaves: Response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol. 2006;170:43–52. doi: 10.1111/j.1469-8137.2006.01643.x. PubMed DOI

Del Río L.A., López-Huertas E. ROS Generation in Peroxisomes and its Role in Cell Signaling. Plant Cell Physiol. 2016;57:1364–1376. doi: 10.1093/pcp/pcw076. PubMed DOI

López-Huertas E., Corpas F.J., Sandalio L.M., del Río L.A. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem. J. 1999;337:531–536. doi: 10.1042/bj3370531. PubMed DOI PMC

Corpas F.J., Barroso J.B., del Río L.A. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 2001;6:145–150. doi: 10.1016/S1360-1385(01)01898-2. PubMed DOI

Mhamdi A., Noctor G., Baker A. Plant catalases: Peroxisomal redox guardians. Arch. Biochem. Biophys. 2012;525:181–194. doi: 10.1016/j.abb.2012.04.015. PubMed DOI

Michels P.A., Moyersoen J., Krazy H., Galland N., Herman M., Hannaert V. Peroxisomes, glyoxysomes and glycosomes. Mol. Membr. Biol. 2005;22:133–145. doi: 10.1080/09687860400024186. PubMed DOI

Pracharoenwattana I., Smith S.M. When is a peroxisome not a peroxisome? Trends Plant Sci. 2008;13:522–525. doi: 10.1016/j.tplants.2008.07.003. PubMed DOI

Corpas F.J., Barroso J.B., Palma J.M., Rodriguez-Ruiz M. Plant peroxisomes: A nitro-oxidative cocktail. Redox Biol. 2017;11:535–542. doi: 10.1016/j.redox.2016.12.033. PubMed DOI PMC

Corpas F.J., del Río L.A., Palma J.M. Impact of Nitric Oxide (NO) on the ROS Metabolism of Peroxisomes. Plants. 2019;8:37. doi: 10.3390/plants8020037. PubMed DOI PMC

Titus D.E., Becker W.M. Investigation of glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J. Cell Biol. 1985;101:1288–1299. doi: 10.1083/jcb.101.4.1288. PubMed DOI PMC

Bailly C., El-Maarouf-Bouteau H., Corbineau F. From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. C. R. Biol. 2008;331:806–814. doi: 10.1016/j.crvi.2008.07.022. PubMed DOI

Kumar J.S.P., Prasad R.S., Banerjee R., Thammineni C. Seed birth to death: Dual functions of reactive oxygen species in seed physiology. Ann. Bot. 2015;116:663–668. doi: 10.1093/aob/mcv098. PubMed DOI PMC

Schwarz D.S., Blower M.D. The endoplasmic reticulum: Structure, function and response to cellular signalling. Cell. Mol. Life Sci. 2016;73:79–94. doi: 10.1007/s00018-015-2052-6. PubMed DOI PMC

Neve E.P., Ingelman-Sundberg M. Cytochrome P450 proteins: Retention and distribution from the endoplasmic reticulum. Curr. Opin. Drug Discov. Dev. 2010;13:78–85. PubMed

Zeeshan H.M.A., Lee G.H., Kim H.R., Chae H.J. Endoplasmic Reticulum Stress and Associated ROS. Int. J. Mol. Sci. 2016;17:327. doi: 10.3390/ijms17030327. PubMed DOI PMC

Ozgur R., Turkan I., Uzilday B., Sekmen A.H. Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. J. Exp. Bot. 2014;65:1377–1390. doi: 10.1093/jxb/eru034. PubMed DOI PMC

Howell S.H. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 2013;64:477–499. doi: 10.1146/annurev-arplant-050312-120053. PubMed DOI

Duan Y., Zhang W., Li B., Wang Y., Li K., Han C., Zhang Y., Li X. An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol. 2010;186:681–695. doi: 10.1111/j.1469-8137.2010.03207.x. PubMed DOI

Werck-Reichhart D., Feyereisen R. Cytochromes P450: A success story. Genome Biol. 2000;1:reviews3003.1. doi: 10.1186/gb-2000-1-6-reviews3003. PubMed DOI PMC

Chen T., Fluhr R. Singlet Oxygen Plays an Essential Role in the Root’s Response to Osmotic Stress. Plant Physiol. 2018;177:1717–1727. doi: 10.1104/pp.18.00634. PubMed DOI PMC

Noctor G., Foyer C.H. Update on redox compartmentation intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol. 2017;171:1581–1592. doi: 10.1104/pp.16.00346. PubMed DOI PMC

Lim S.D., Kim S.H., Gilroy S., Cushman J.C., Choi W.G. Quantitative ROS bioreporters: A robust toolkit for studying biological roles of ROS in response to abiotic and biotic stresses. Physiol. Plant. 2019;165:356–368. doi: 10.1111/ppl.12866. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...