On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
30999668
PubMed Central
PMC6523537
DOI
10.3390/antiox8040105
PII: antiox8040105
Knihovny.cz E-resources
- Keywords
- cell wall, chloroplasts, cytoplasmic membrane, cytosol, glyoxysomes, mitochondria, peroxisomes, plant cell, reactive oxygen species,
- Publication type
- Journal Article MeSH
- Review MeSH
Reactive oxygen species (ROS) have been recognized as important signaling compoundsof major importance in a number of developmental and physiological processes in plants. Theexistence of cellular compartments enables efficient redox compartmentalization and ensuresproper functioning of ROS-dependent signaling pathways. Similar to other organisms, theproduction of individual ROS in plant cells is highly localized and regulated bycompartment-specific enzyme pathways on transcriptional and post-translational level. ROSmetabolism and signaling in specific compartments are greatly affected by their chemicalinteractions with other reactive radical species, ROS scavengers and antioxidant enzymes. Adysregulation of the redox status, as a consequence of induced ROS generation or decreasedcapacity of their removal, occurs in plants exposed to diverse stress conditions. During stresscondition, strong induction of ROS-generating systems or attenuated ROS scavenging can lead tooxidative or nitrosative stress conditions, associated with potential damaging modifications of cellbiomolecules. Here, we present an overview of compartment-specific pathways of ROS productionand degradation and mechanisms of ROS homeostasis control within plant cell compartments.
See more in PubMed
Gabaldón T., Pittis A.A. Origin and evolution of metabolic sub-cellular compartmentalization in eukaryotes. Biochimie. 2015;119:262–268. doi: 10.1016/j.biochi.2015.03.021. PubMed DOI PMC
Go Y.M., Jones D.P. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta. 2008;1780:1273–1290. doi: 10.1016/j.bbagen.2008.01.011. PubMed DOI PMC
Dey S., Sidor A., O’Rourke B. Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes. J. Biol. Chem. 2016;291:11185–11197. doi: 10.1074/jbc.M116.726968. PubMed DOI PMC
Kaludercic N., Deshwal S., Di Lisa F. Reactive oxygen species and redox compartmentalization. Front. Physiol. 2014;5:285. doi: 10.3389/fphys.2014.00285. PubMed DOI PMC
D’Autréaux B., Toledano M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007;8:813–824. doi: 10.1038/nrm2256. PubMed DOI
Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Schieber M., Chandel N.S. ROS function in redox signalling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC
Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145:dev164376. doi: 10.1242/dev.164376. PubMed DOI
Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90:856–867. doi: 10.1111/tpj.13299. PubMed DOI
Dreyer A., Dietz K.J. Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants. 2018;7:169. doi: 10.3390/antiox7110169. PubMed DOI PMC
Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI
Eckardt N.A. The Plant Cell Reviews Plant Immunity: Receptor-Like Kinases, ROS-RLK Crosstalk, Quantitative Resistance, and the Growth/Defense Trade-Off. Plant Cell. 2017;29:601–602. doi: 10.1105/tpc.17.00289. PubMed DOI PMC
Vaahtera L., Brosché M., Wrzaczek M., Kangasjärvi J. Specificity in ROS signalling and transcripts signatures. Antioxid. Redox Signal. 2014;21:1422–1441. doi: 10.1089/ars.2013.5662. PubMed DOI PMC
Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot. 2015;109:212–228. doi: 10.1016/j.envexpbot.2014.06.021. DOI
Richards S.L., Wilkins K.A., Swarbreck S.M., Anderson A.A., Habib N., Smith A.G., McAinsh M., Davies J.M. The hydroxyl radical in plants: From seed to seed. J. Exp. Bot. 2015;66:37–46. doi: 10.1093/jxb/eru398. PubMed DOI
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plan Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9. PubMed DOI
Skovsen E., Snyder J.W., Lambert J.D.C., Ogilby P.R. Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. Lett. 2005;109:8570–8573. doi: 10.1021/jp051163i. PubMed DOI
Dogra V., Rochaix J.D., Kim C. Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: An emerging perspective. Plant Cell Environ. 2018;41:1727–1738. doi: 10.1111/pce.13332. PubMed DOI
Prasad A., Sedlářová M., Kale R.S., Pospíšil P. Lipoxygenase in singlet oxygen generation as a response to wounding: In vivo imaging in Arabidopsis thaliana. Sci. Rep. 2017;7:9831. doi: 10.1038/s41598-017-09758-1. PubMed DOI PMC
Krieger-Liszkay A., Fufezan C., Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 2008;98:551–564. doi: 10.1007/s11120-008-9349-3. PubMed DOI
Halliwell B. Reactive species and antioxidants. Redox biology is fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073. PubMed DOI PMC
Antunes F., Brito P.M. Quantitative biology of hydrogen peroxide signaling. Redox Biol. 2017;13:1–7. doi: 10.1016/j.redox.2017.04.039. PubMed DOI PMC
Rampon C., Volovitch M., Joliot A., Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants. 2018;7:159. doi: 10.3390/antiox7110159. PubMed DOI PMC
Tamma G., Valenti G., Grossini E., Donnini S., Marino A., Marinelli R.A., Calamita G. Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends. Oxidative Med. Cell. Longev. 2018;2018:1501847. doi: 10.1155/2018/1501847. PubMed DOI PMC
Nordzieke D.E., Medraño-Fernandez I. The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants. 2018;7:168. doi: 10.3390/antiox7110168. PubMed DOI PMC
Smirnoff N., Arnaud D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019;221:1197–1214. doi: 10.1111/nph.15488. PubMed DOI
Jacoby R.P., Millar A.H., Taylor N.L. Mitochondrial Biochemistry: Stress Responses and Roles in Stress Alleviation. In: Roberts J.A., editor. Annual Plant Reviews Online. Wiley Online Library; New York, NY, USA: 2018.
Mignolet-Spruyt L., Xu E., Idänheimo N., Hoeberichts F.A., Mühlenbock P., Brosché M., Van Breusegem F., Kangasjärvi J. Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 2016;67:3831–3844. doi: 10.1093/jxb/erw080. PubMed DOI
Srivastava A., Redij T., Sharma B., Suprasanna P. Interaction between Hormone and Redox Signaling in Plants: Divergent Pathways and Convergent Roles. In: Pandey G.K., editor. Mechanism of Plant Hormone Signaling under Stress. Wiley Online Library; New York, NY, USA: 2017.
Jajic I., Sarna T., Strzalka K. Senescence, Stress, and Reactive Oxygen Species. Plants. 2015;4:393–411. doi: 10.3390/plants4030393. PubMed DOI PMC
Keegstra K. Plant Cell Walls. Plant Physiol. 2010;154:483–486. doi: 10.1104/pp.110.161240. PubMed DOI PMC
Höfte H. The Yin and Yang of Cell Wall Integrity Control: Brassinosteroid and FERONIA Signaling. Plant Cell Physiol. 2015;56:224–231. doi: 10.1093/pcp/pcu182. PubMed DOI
Qi J., Wang J., Gong Z., Zhou J.M. Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 2017;38:92–100. doi: 10.1016/j.pbi.2017.04.022. PubMed DOI
Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014;35:345–351. doi: 10.1016/j.it.2014.05.004. PubMed DOI
Kimura S., Waszczak C., Hunter K., Wrzaczek M. Bound by Fate: The Role of Reactive Oxygen Species in Receptor-Like Kinase Signaling. Plant Cell. 2017;29:638–654. doi: 10.1105/tpc.16.00947. PubMed DOI PMC
Schmidt R., Kunkowska A.B., Schippers J.H. Role of Reactive Oxygen Species during Cell Expansion in Leaves. Plant Physiol. 2016;172:2098–2106. doi: 10.1104/pp.16.00426. PubMed DOI PMC
Novaković L., Guo T., Bacic A., Sampathkumar A., Johnson K.L. Hitting the Wall—Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. Plants. 2018;7:89. doi: 10.3390/plants7040089. PubMed DOI PMC
Lazzarotto F., Turchetto-Zolet A.C., Margis-Pinheiro M. Revisiting the Non-Animal Peroxidase Superfamily. Trends Plant Sci. 2015;20:807–813. doi: 10.1016/j.tplants.2015.08.005. PubMed DOI
Mathé C., Barre A., Jourda C., Dunand C. Evolution and expression of class III peroxidases. Arch. Biochem. Biophys. 2010;500:58–65. doi: 10.1016/j.abb.2010.04.007. PubMed DOI
Berglund G.I., Carlsson G.H., Smith A.T., Szöke H., Henriksen A., Hajdu J. The catalytic pathway of horseradish peroxidase at high resolution. Nature. 2002;417:463–468. doi: 10.1038/417463a. PubMed DOI
Lüthje S., Martinez-Cortes T. Membrane-Bound Class III Peroxidases: Unexpected Enzymes with Exciting Functions. Int. J. Mol. Sci. 2018;19:2876. doi: 10.3390/ijms19102876. PubMed DOI PMC
O´Brien J.A., Daudi A., Finch P., Butt V.S., Whitelegge J.P., Souda P., Ausubel F.M., Bolwell G.P. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 2012;158:2013–2027. doi: 10.1104/pp.111.190140. PubMed DOI PMC
Francoz E., Ranocha P., Nguyen-Kim H., Jamet E., Burlat V., Dunand C. Roles of cell wall peroxidases in plant development. Phytochemistry. 2015;112:15–21. doi: 10.1016/j.phytochem.2014.07.020. PubMed DOI
Veitch N.C. Structural determinants of plant peroxidase function. Phytochem. Rev. 2004;3:3–18. doi: 10.1023/B:PHYT.0000047799.17604.94. DOI
Shigeto J., Tsutsumi Y. Diverse functions and reactions of class III peroxidases. New Phytol. 2016;209:1395–1402. doi: 10.1111/nph.13738. PubMed DOI
Dennes L., McKenna J.F., Segonzac C., Wormit A., Madhou P., Bennet M., Mansfield J., Zipfel C., Hamann T. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 2011;156:1364–1374. doi: 10.1104/pp.111.175737. PubMed DOI PMC
Survila M., Davidsson P.R., Pennanen V., Kariola T., Broberg M., Sipari N., Heino P., Palva E.T. Peroxidase-Generated Apoplastic ROS Impair Cuticle Integrity and Contribute to DAMP-Elicited Defenses. Front. Plant Sci. 2016;23:1945. doi: 10.3389/fpls.2016.01945. PubMed DOI PMC
Kärkönen A., Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry. 2015;112:22–32. doi: 10.1016/j.phytochem.2014.09.016. PubMed DOI
Foyer G., Noctor C.F. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol. 2016;171:1581–1592. PubMed PMC
Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI
Ghuge S.A., Tisi A., Carucci A., Rodrigues-Pousada R.A., Franchi S., Tavladoraki P., Angelini R., Cona A. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions. Plants. 2015;4:489–504. doi: 10.3390/plants4030489. PubMed DOI PMC
Tavladoraki P., Cona A., Angelini R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. Front. Plant Sci. 2016;7:824. doi: 10.3389/fpls.2016.00824. PubMed DOI PMC
Chen D., Shao Q., Yin L., Younis A., Zheng B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front. Plant Sci. 2019;9:1945. doi: 10.3389/fpls.2018.01945. PubMed DOI PMC
Cona A., Rea G., Angelini R., Federico R., Tavladoraki P. Functions of amine oxidases in plant development and defence. Trend Plant Sci. 2006;11:80–88. doi: 10.1016/j.tplants.2005.12.009. PubMed DOI
Pei Z.M., Murata Y., Benning G., Thomine S. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000;406:731–734. doi: 10.1038/35021067. PubMed DOI
Kwak J.M., Mori I.C., Pei Z.M., Leonhardt N., Torres M.A., Dangl J.L., Schroeder J.I. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signalling in Arabidopsis. EMBO J. 2003;22:2623–2633. doi: 10.1093/emboj/cdg277. PubMed DOI PMC
Davidson R.M., Reeves P.A., Manosalva P.M., Leach J.E. Germins: A diverse protein family important for crop improvement. Plant Sci. 2009;177:499–510. doi: 10.1016/j.plantsci.2009.08.012. DOI
Zhang X.Y., Nie Z.H., Wang W.J., Leung D.W., Xu D.G., Chen B.L., Liu E.E. Relationship between disease resistance and rice oxalate oxidases in transgenic rice. PLoS ONE. 2013;8:e78348. doi: 10.1371/journal.pone.0078348. PubMed DOI PMC
Berniers F., Berna A. Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly? Plant Physiol. Biochem. 2001;39:545–554. doi: 10.1016/S0981-9428(01)01285-2. DOI
Suzuki N., Miller G., Morales J., Shulaev V., Torres M.A., Mittler R. Respiratory burst oxidases: The engines of ROS signaling. Curr. Opin. Plant Biol. 2001;14:691–699. doi: 10.1016/j.pbi.2011.07.014. PubMed DOI
Sagi M., Fluhr R. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 2006;141:336–340. doi: 10.1104/pp.106.078089. PubMed DOI PMC
Nühse T.S., Bottrill A.R., Jones A.M.E., Peck S.C. Quantitive phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanism of pnat innate immune responses. Plant J. 2007;51:931–940. doi: 10.1111/j.1365-313X.2007.03192.x. PubMed DOI PMC
Kadota Y., Shirasu K., Zipfel C. Regulation of the NADPH Oxidase RBOHD During Plant Immunity. Plant Cell Physiol. 2015;56:1472–1480. doi: 10.1093/pcp/pcv063. PubMed DOI
Hao H., Fan L., Chen T., Li R., Li X., He Q., Botella M.A., Lin J. Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plan Cell. 2014;26:1729–1745. doi: 10.1105/tpc.113.122358. PubMed DOI PMC
Noirot E., Lherminier J., Robert F., Moricová P., Kieu K., Leborgne-Castel N., Simon-Plas F., Bouhidel K. Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein. J. Exp. Bot. 2014;65:5011–5022. doi: 10.1093/jxb/eru265. PubMed DOI PMC
Torres M.A., Onouchi H., Hamada S., Machida C., Hammond-Kosack K.E., Jones J.D.G. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox) Plant J. 1998;14:365–370. doi: 10.1046/j.1365-313X.1998.00136.x. PubMed DOI
Ogasawara Y., Kaya H., Hiaroka G., Yumoto F., Kimura S., Kadota Y., Hishinuma H., Senzaki E., Yamagoe S., Nagata K., et al. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 2008;283:8885–8892. doi: 10.1074/jbc.M708106200. PubMed DOI
Kimura S., Kaya H., Kawarazaki T., Hiraoka G., Senzaki G., Michikawa M., Kuchitsu K. Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidase and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim. Biophys. Acta. 2012;1823:398–405. doi: 10.1016/j.bbamcr.2011.09.011. PubMed DOI
Asai S., Ichikawa T., Nomura H., Kobayashi M., Kamiyoshihara Y., Mori H., Kadota Y., Zipfel C., Jones J.D.G., Yoshioka H. The variable domain of plant calcium-dependent protein kinase (CDPK) confers subcellular localization and substrate recognition for NADPH oxidase. J. Biol. Chem. 2013;288:14332–14340. doi: 10.1074/jbc.M112.448910. PubMed DOI PMC
Ogawa K., Kanematsu S., Asada K. Generation of superoxide anion and localization of CuZn superoxide dismutase in the vascular tissue of spinach hypocotyls: Their association with lignification. Plant Cell Physiol. 1997;38:1118–1126. doi: 10.1093/oxfordjournals.pcp.a029096. PubMed DOI
Koffler B.E., Bloem E., Zellnig G., Zechmann B. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis. Micron. 2013;45:119–128. doi: 10.1016/j.micron.2012.11.006. PubMed DOI PMC
Booker F.L., Burkey K.O., Jones A.M. Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L. Plant Cell Environ. 2012;35:1456–1466. doi: 10.1111/j.1365-3040.2012.02502.x. PubMed DOI PMC
Tran D., Kadono T., Molas M.L., Errakhi R., Briand J., Biligui B., Kawano T., Bouteau F. A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells. Plant Cell Environ. 2013;36:569–578. doi: 10.1111/j.1365-3040.2012.02596.x. PubMed DOI
Zechmann B. Compartment-Specific Importance of Ascorbate During Environmental Stress in Plants. Antioxid. Redox Signal. 2017;29:1488–1501. doi: 10.1089/ars.2017.7232. PubMed DOI
Tripathy B.C., Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 2012;7:1621–1633. doi: 10.4161/psb.22455. PubMed DOI PMC
Yesbergenova Z., Yang G., Oron E., Soffer D., Fluhr R., Sagi M. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J. 2005;42:862–876. doi: 10.1111/j.1365-313X.2005.02422.x. PubMed DOI
Yergaliyev T.M., Nurbekova Z., Mukiyanova G., Akbassova A., Sutula M., Zhangazin S., Bari A., Tleukulova Z., Shamekova M., Masalimov Z.K., et al. The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection. Plant Physiol. Biochem. 2016;109:36–44. doi: 10.1016/j.plaphy.2016.09.001. PubMed DOI
Srivastava S., Brychkova G., Yarmolinsky D., Soltabayeva A., Samani T., Sagi M. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification. Plant Physiol. 2017;173:1977–1997. doi: 10.1104/pp.16.01939. PubMed DOI PMC
Ma X., Wang W., Bittner F., Schmidt N., Berkey R., Zhang L., King H., Zhang Y., Feng J., Wen Y., et al. Dual and Opposing Roles of Xanthine Dehydrogenase in Defense-Associated Reactive Oxygen Species Metabolism in Arabidopsis. Plant Cell. 2016;28:1108–1126. doi: 10.1105/tpc.15.00880. PubMed DOI PMC
Van Breusegem F., Bailey-Serres J., Mittler R. Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 2008;147:978–984. doi: 10.1104/pp.108.122325. PubMed DOI PMC
Schmitt F.J., Renger G., Friedrich T., Kreslavski V.D., Zharmukhamedov S.K., Los D.A., Kuznetsov V.V., Allakhverdiev S.I. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim. Biophys. Acta. 2014;1837:835–848. doi: 10.1016/j.bbabio.2014.02.005. PubMed DOI
Cezary W., Carmody M., Kangasjärvi J. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 2018;69:209–236. PubMed
Navrot N., Rouhier N., Gelhaye E., Jacquot J.P. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 2007;129:185–195. doi: 10.1111/j.1399-3054.2006.00777.x. DOI
Morgan M.J., Lehmann M., Schwarzländer M., Baxter C.J., Sienkiewicz-Porzucek A., Williams T.C., Schauer N., Fernie A.R., Fricker M.D., Ratcliffe R.G., et al. Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol. 2008;147:101–114. doi: 10.1104/pp.107.113613. PubMed DOI PMC
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;47:1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC
Braidot E., Petrussa E., Vianello A., Macri F. Hydrogen peroxide generation by higher plant mitochondria oxidizing complex I or complex II substrates. FEBS Lett. 1999;451:347–350. doi: 10.1016/S0014-5793(99)00616-X. PubMed DOI
Umbach A.L., Fiorani F., Siedow J.N. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol. 2005;139:1806–1820. doi: 10.1104/pp.105.070763. PubMed DOI PMC
Gleason C., Huang S., Thatcher L.F., Foley R.C., Anderson C.R., Carroll A.J., Millar H.A., Singh K.B. Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc. Natl. Acad. Sci. USA. 2011;108:10768–10773. doi: 10.1073/pnas.1016060108. PubMed DOI PMC
Huang S., Van Aken O., Schwarzländer M., Belt K., Millar A.H. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiol. 2016;171:1551–1559. doi: 10.1104/pp.16.00166. PubMed DOI PMC
Šírová J., Sedlářová M., Piterková J., Luhová L., Petřivalský M. The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci. 2011;181:560–572. doi: 10.1016/j.plantsci.2011.03.014. PubMed DOI
Vanlerberghe G.C. Alternative oxidase: A mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int. J. Mol. Sci. 2013;14:6805–6847. doi: 10.3390/ijms14046805. PubMed DOI PMC
Barreto P., Okura V.K., Neshich I.A., Maia Ide G., Arruda P. Overexpression of UCP1 in tobacco induces mitochondrial biogenesis and amplifies a broad stress response. BMC Plant Biol. 2014;14:144. doi: 10.1186/1471-2229-14-144. PubMed DOI PMC
Barreto P., Yassitepe J., Wilson Z.A., Arruda P. Mitochondrial Uncoupling Protein 1 Overexpression Increases Yield in Nicotiana tabacum under Drought Stress by Improving Source and Sink Metabolism. Front. Plant Sci. 2017;8:1836. doi: 10.3389/fpls.2017.01836. PubMed DOI PMC
Triantaphylidès C., Havaux M. Singlet oxygen in plants: Production, detoxification and signaling. Trends Plant Sci. 2009;14:219–228. doi: 10.1016/j.tplants.2009.01.008. PubMed DOI
Roach T., Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 2014;15:351–362. doi: 10.2174/1389203715666140327105143. PubMed DOI PMC
Ramel F., Birtic S., Cuiné S., Triantaphylides C., Ravanat J.L., Havaux M. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol. 2012;158:1268–1287. doi: 10.1104/pp.111.182394. PubMed DOI PMC
Asada K. The water–water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:601–639. doi: 10.1146/annurev.arplant.50.1.601. PubMed DOI
Pospíšil P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. Front. Plant Sci. 2016;7:1950. doi: 10.3389/fpls.2016.01950. PubMed DOI PMC
Noctor G., Arisi A.C.M., Jouanin L., Foyer C.H. Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J. Exp. Bot. 1999;50:1157–1167. doi: 10.1093/jxb/50.336.1157. DOI
Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 2000;57:779–795. doi: 10.1007/s000180050041. PubMed DOI PMC
Foyer C.H., Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta. 1976;133:21–25. doi: 10.1007/BF00386001. PubMed DOI
Foyer C.H., Noctor G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011;155:2–18. doi: 10.1104/pp.110.167569. PubMed DOI PMC
Del Río L.A., Corpas F.J., Sandalio L.M., Palma J.M., Gómez M., Barroso J.B. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 2002;53:1255–1272. doi: 10.1093/jxb/53.372.1255. PubMed DOI
Noctor G., Foyer C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:249–279. doi: 10.1146/annurev.arplant.49.1.249. PubMed DOI
Romero-Puertas M.C., Corpas F.J., Sandalio L.M., Leterrier M., Rodriguez-Serrano M., del Río L.A., Palma J.M. Glutathione reductase from pea leaves: Response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol. 2006;170:43–52. doi: 10.1111/j.1469-8137.2006.01643.x. PubMed DOI
Del Río L.A., López-Huertas E. ROS Generation in Peroxisomes and its Role in Cell Signaling. Plant Cell Physiol. 2016;57:1364–1376. doi: 10.1093/pcp/pcw076. PubMed DOI
López-Huertas E., Corpas F.J., Sandalio L.M., del Río L.A. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem. J. 1999;337:531–536. doi: 10.1042/bj3370531. PubMed DOI PMC
Corpas F.J., Barroso J.B., del Río L.A. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 2001;6:145–150. doi: 10.1016/S1360-1385(01)01898-2. PubMed DOI
Mhamdi A., Noctor G., Baker A. Plant catalases: Peroxisomal redox guardians. Arch. Biochem. Biophys. 2012;525:181–194. doi: 10.1016/j.abb.2012.04.015. PubMed DOI
Michels P.A., Moyersoen J., Krazy H., Galland N., Herman M., Hannaert V. Peroxisomes, glyoxysomes and glycosomes. Mol. Membr. Biol. 2005;22:133–145. doi: 10.1080/09687860400024186. PubMed DOI
Pracharoenwattana I., Smith S.M. When is a peroxisome not a peroxisome? Trends Plant Sci. 2008;13:522–525. doi: 10.1016/j.tplants.2008.07.003. PubMed DOI
Corpas F.J., Barroso J.B., Palma J.M., Rodriguez-Ruiz M. Plant peroxisomes: A nitro-oxidative cocktail. Redox Biol. 2017;11:535–542. doi: 10.1016/j.redox.2016.12.033. PubMed DOI PMC
Corpas F.J., del Río L.A., Palma J.M. Impact of Nitric Oxide (NO) on the ROS Metabolism of Peroxisomes. Plants. 2019;8:37. doi: 10.3390/plants8020037. PubMed DOI PMC
Titus D.E., Becker W.M. Investigation of glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J. Cell Biol. 1985;101:1288–1299. doi: 10.1083/jcb.101.4.1288. PubMed DOI PMC
Bailly C., El-Maarouf-Bouteau H., Corbineau F. From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. C. R. Biol. 2008;331:806–814. doi: 10.1016/j.crvi.2008.07.022. PubMed DOI
Kumar J.S.P., Prasad R.S., Banerjee R., Thammineni C. Seed birth to death: Dual functions of reactive oxygen species in seed physiology. Ann. Bot. 2015;116:663–668. doi: 10.1093/aob/mcv098. PubMed DOI PMC
Schwarz D.S., Blower M.D. The endoplasmic reticulum: Structure, function and response to cellular signalling. Cell. Mol. Life Sci. 2016;73:79–94. doi: 10.1007/s00018-015-2052-6. PubMed DOI PMC
Neve E.P., Ingelman-Sundberg M. Cytochrome P450 proteins: Retention and distribution from the endoplasmic reticulum. Curr. Opin. Drug Discov. Dev. 2010;13:78–85. PubMed
Zeeshan H.M.A., Lee G.H., Kim H.R., Chae H.J. Endoplasmic Reticulum Stress and Associated ROS. Int. J. Mol. Sci. 2016;17:327. doi: 10.3390/ijms17030327. PubMed DOI PMC
Ozgur R., Turkan I., Uzilday B., Sekmen A.H. Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. J. Exp. Bot. 2014;65:1377–1390. doi: 10.1093/jxb/eru034. PubMed DOI PMC
Howell S.H. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 2013;64:477–499. doi: 10.1146/annurev-arplant-050312-120053. PubMed DOI
Duan Y., Zhang W., Li B., Wang Y., Li K., Han C., Zhang Y., Li X. An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol. 2010;186:681–695. doi: 10.1111/j.1469-8137.2010.03207.x. PubMed DOI
Werck-Reichhart D., Feyereisen R. Cytochromes P450: A success story. Genome Biol. 2000;1:reviews3003.1. doi: 10.1186/gb-2000-1-6-reviews3003. PubMed DOI PMC
Chen T., Fluhr R. Singlet Oxygen Plays an Essential Role in the Root’s Response to Osmotic Stress. Plant Physiol. 2018;177:1717–1727. doi: 10.1104/pp.18.00634. PubMed DOI PMC
Noctor G., Foyer C.H. Update on redox compartmentation intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol. 2017;171:1581–1592. doi: 10.1104/pp.16.00346. PubMed DOI PMC
Lim S.D., Kim S.H., Gilroy S., Cushman J.C., Choi W.G. Quantitative ROS bioreporters: A robust toolkit for studying biological roles of ROS in response to abiotic and biotic stresses. Physiol. Plant. 2019;165:356–368. doi: 10.1111/ppl.12866. PubMed DOI
Multicontamination Toxicity Evaluation in the Model Plant Lactuca sativa L