Review: New sensors and data-driven approaches-A path to next generation phenomics

. 2019 May ; 282 () : 2-10. [epub] 20190112

Jazyk angličtina Země Irsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31003608
Odkazy

PubMed 31003608
PubMed Central PMC6483971
DOI 10.1016/j.plantsci.2019.01.011
PII: S0168-9452(17)31050-6
Knihovny.cz E-zdroje

At the 4th International Plant Phenotyping Symposium meeting of the International Plant Phenotyping Network (IPPN) in 2016 at CIMMYT in Mexico, a workshop was convened to consider ways forward with sensors for phenotyping. The increasing number of field applications provides new challenges and requires specialised solutions. There are many traits vital to plant growth and development that demand phenotyping approaches that are still at early stages of development or elude current capabilities. Further, there is growing interest in low-cost sensor solutions, and mobile platforms that can be transported to the experiments, rather than the experiment coming to the platform. Various types of sensors are required to address diverse needs with respect to targets, precision and ease of operation and readout. Converting data into knowledge, and ensuring that those data (and the appropriate metadata) are stored in such a way that they will be sensible and available to others now and for future analysis is also vital. Here we are proposing mechanisms for "next generation phenomics" based on our learning in the past decade, current practice and discussions at the IPPN Symposium, to encourage further thinking and collaboration by plant scientists, physicists and engineering experts.

Zobrazit více v PubMed

Araus J.L., Cairns J.E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014;19:52–61. PubMed

Tardieu F., Cabrera-Bosquet L., Pridmore T., Bennett M., Phenomics Plant. From sensors to knowledge. Curr. Biol. 2017;27:R770–R783. PubMed

Fiorani F., Schurr U. Future scenarios for plant phenotyping. In: Merchant S.S., editor. Vol. 64. 2013. pp. 267–291. (Annual Review of Plant Biology). PubMed

Coppens F., Wuyts N., Inzé D., Dhondt S. Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr. Opin. Syst. Biol. 2017;4:58–63. PubMed PMC

Pauli D., Chapman S.C., Bart R., Topp C.N., Lawrence-Dill C.J., Poland J., Gore M.A. The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiol. 2016;172:622–634. PubMed PMC

Li J., Rascher U., Müller-Linow M., Cendrero-Mateo M.P., Pieruschka R., Albrecht H., Pinto F., Gatzke S., Rischbeck P., Keller B. Terrestrial Ecosystem Research Infrastructures. CRC Press; 2017. Field phenotyping: concepts and examples to quantify dynamic plant traits across scales in the Field; pp. 77–104.

4th International Plant Phenotyping Symposium, Mexico4th International Plant Phenotyping Symposium2016. 4th International Plant Phenotyping Symposium. 2016:73.

Großkinsky D.K., Jaya Syaifullah S., Roitsch T., Lim P. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J. Exp. Bot. 2017;69:825–844. PubMed

Moore G.K. What is a picture worth? A history of remote sensing/Quelle est la valeur d’une image? Un tour d’horizon de télédétection. Hydrol. Sci. Bull. 1979;24:477–485.

Rebetzke G.J., Jimenez-Berni J.A., Bovill W.D., Deery D.M., James R.A. High-throughput phenotyping technologies allow accurate selection of stay-green. J. Exp. Bot. 2016;67:4919–4924. PubMed PMC

Jimenez-Berni J.A., Deery D.M., Rozas-Larraondo P., Condon A.T.G., Rebetzke G.J., James R.A., Bovill W.D., Furbank R.T., Sirault X.R. High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR. Front. Plant Sci. 2018;9:237. PubMed PMC

Eitel J.U., Magney T.S., Vierling L.A., Brown T.T., Huggins D.R. LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status. Field Crops Res. 2014;159:21–32.

Geipel J., Link J., Claupein W. Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens. 2014;6:10335–10355.

Tilly N., Hoffmeister D., Cao Q., Lenz-Wiedemann V., Miao Y., Bareth G. Transferability of models for estimating paddy rice biomass from spatial plant height data. Agriculture. 2015;5:538–560.

Kaasalainen S., Holopainen M., Karjalainen M., Vastaranta M., Kankare V., Karila K., Osmanoglu B. Combining lidar and synthetic aperture radar data to estimate forest biomass: status and prospects. Forests. 2015;6:252–270.

J.G. Harris, A. Krishnaswamy, S. Byer, Method and system for dynamic, luminance-based color contrasting in a region of interest in a graphic image in, Google Patents, 2011.

Dai W., Yang B., Dong Z., Shaker A. A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS J. Photogramm. Remote. Sens. 2018;144:400–411.

Danson F.M., Gaulton R., Armitage R.P., Disney M., Gunawan O., Lewis P., Pearson G., Ramirez A.F. Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure. Agric. For. Meteorol. 2014;198:7–14.

Douglas E., Martel J., Cook T., Mendill C., Marshall R., Chakrabarti S., Strahler A., Schaaf C., Woodcock C., Liu Z. Proceedings of SilviLaser. 2012. A dual-wavelength echidna lidar for Ground-based Forest scanning.

Wallace A.M., McCarthy A., Nichol C.J., Ren X., Morak S., Martinez-Ramirez D., Woodhouse I.H., Buller G.S. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans. Geosci. Remote. Sens. 2014;52:4942–4954.

Wei G., Shalei S., Bo Z., Shuo S., Faquan L., Xuewu C. Multi-wavelength canopy LiDAR for remote sensing of vegetation: design and system performance. ISPRS J. Photogramm. Remote. Sens. 2012;69:1–9.

Morsy S., Shaker A., El-Rabbany A. Multispectral LiDAR data for land cover classification of urban areas. Sensors. 2017;17:958. PubMed PMC

van Rees E. The first multispectral airborne lidar sensor. GeoInformatics. 2015;18:10.

Vadez V., Kholova J., Hummel G., Zhokhavets U., Gupta S.K., Hash C.T. LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J. Exp. Bot. 2015;66:5581–5593. PubMed PMC

Kuhlgert S., Austic G., Zegarac R., Osei-Bonsu I., Hoh D., Chilvers M.I., Roth M.G., Bi K., TerAvest D., Weebadde P. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. R. Soc. Open Sci. 2016;3 PubMed PMC

Kolber Z., Klimov D., Ananyev G., Rascher U., Berry J., Osmond B. Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynthesis Res. 2005;84:121–129. PubMed

Raesch A., Muller O., Pieruschka R., Rascher U. Field observations with laser-induced fluorescence transient (LIFT) method in barley and sugar beet. Agriculture. 2014;4:159.

Pinto F., Damm A., Schickling A., Panigada C., Cogliati S., Müller‐Linow M., Balvora A., Rascher U. Sun‐induced chlorophyll fluorescence from high‐resolution imaging spectroscopy data to quantify spatio‐temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 2016;39:1500–1512. PubMed

Deery D.M., Rebetzke G.J., Jimenez-Berni J.A., James R.A., Condon A.G., Bovill W.D., Hutchinson P., Scarrow J., Davy R., Furbank R.T. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front. Plant Sci. 2016;7:1808. PubMed PMC

Chapman S., Merz T., Chan A., Jackway P., Hrabar S., Dreccer M., Holland E., Zheng B., Ling T., Jimenez-Berni J. Pheno-Copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy. 2014;4:279.

Camino C., González-Dugo V., Hernández P., Sillero J.C., Zarco‐Tejada P.J. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 2018;70:105–117.

Yang G., Liu J., Zhao C., Li Z., Huang Y., Yu H., Xu B., Yang X., Zhu D., Zhang X., Zhang R., Feng H., Zhao X., Li Z., Li H., Yang H. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front. Plant Sci. 2017;8:1111. PubMed PMC

Underwood J., Wendel A., Schofield B., McMurray L., Kimber R. Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle. J. Field Robot. 2017;34:1061–1083.

Wendel A., Underwood J. Illumination compensation in ground based hyperspectral imaging. ISPRS J. Photogramm. Remote. Sens. 2017;129:162–178.

Gonzalez-Dugo V., Hernandez P., Solis I., Zarco-Tejada P. Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. Remote Sens. 2015;7:13586.

Ngo Q.M., Ho Y.-L.D., Pugh J.R., Sarua A., Cryan M.J. Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays. Curr. Appl. Phys. 2018;18:793–798.

Dorh N., Sarua A., Stokes J., Hueting N., Cryan M. Fluorescent emission enhancement by aluminium nanoantenna arrays in the near UV. J. Opt. 2016;18

Valle B., Simonneau T., Boulord R., Sourd F., Frisson T., Ryckewaert M., Hamard P., Brichet N., Dauzat M., Christophe A. PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments. Plant Methods. 2017;13:98. PubMed PMC

Zhou B., Elazab A., Bort J., Vergara O., Serret M.D., Araus J.L. Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput. Electron. Agric. 2015;116:20–29.

Yu K., Kirchgessner N., Grieder C., Walter A., Hund A. An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping. Plant Methods. 2017;13:15. PubMed PMC

Ghamkhar K., Irie K., Hagedorn M., Hsiao J., Fourie J., Gebbie S., Flay C., Barrett B., Stewart A., Werner A. Breeding Grasses and Protein Crops in the Era of Genomics. Springer; 2018. Using LIDAR for forage yield measurement of perennial ryegrass (Lolium perenne L.) field plots; pp. 203–208.

Siebers M., Edwards E., Jimenez-Berni J., Thomas M., Salim M., Walker R. Fast phenomics in vineyards: development of GRover, the grapevine rover, and LiDAR for assessing grapevine traits in the field. Sensors. 2018;18:2924. PubMed PMC

Hu P., Chapman S.C., Wang X., Potgieter A., Duan T., Jordan D., Guo Y., Zheng B. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: example for sorghum breeding. Eur. J. Agron. 2018;95:24–32.

Shi Y., Thomasson J.A., Murray S.C., Pugh N.A., Rooney W.L., Shafian S., Rajan N., Rouze G., Morgan C.L., Neely H.L. Unmanned aerial vehicles for high-throughput phenotyping and agronomic research. PLoS One. 2016;11 PubMed PMC

Holmgren J., Nilsson M., Olsson H. Estimation of tree height and stem volume on plots using airborne laser scanning. For. Sci. 2003;49:419–428.

Lefsky M.A., Cohen W., Acker S., Parker G.G., Spies T., Harding D. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sens. Environ. 1999;70:339–361.

Næsset E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002;80:88–99.

Ehlert D., Adamek R., Horn H.-J. Laser rangefinder-based measuring of crop biomass under field conditions. Precis. Agric. 2009;10:395–408.

Harding D., Lefsky M., Parker G., Blair J. Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests. Remote Sens. Environ. 2001;76:283–297.

Lovell J., Jupp D.L., Culvenor D., Coops N. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can. J. Remote. Sens. 2003;29:607–622.

Saeys W., Lenaerts B., Craessaerts G., De Baerdemaeker J. Estimation of the crop density of small grains using LiDAR sensors. Biosyst. Eng. 2009;102:22–30.

Barrett B., Faville M.J., Ghamkhar K., Carena M.J. Developing new tools for pasture plant breeding. J. N. Z. Grasslands. 2018;80

Mairhofer S., Zappala S., Tracy S.R., Sturrock C., Bennett M., Mooney S.J., Pridmore T. RooTrak: automated recovery of three-dimensional plant root architecture in soil from X-ray Micro-Computed Tomography Images using visual tracking. Plant Physiol. 2012;158 PubMed PMC

Jeudy C., Adrian M., Baussard C., Bernard C., Bernaud E., Bourion V., Busset H., Cabrera-Bosquet L., Cointault F., Han S.M., Lamboeuf M., Moreau D., Pivato B., Prudent M., Trouvelot S., Truong H.N., Vernoud V., Voisin A.S., Wipf D., Salon C. RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. Plant Methods. 2016;12 PubMed PMC

Whalley W.R., Binley A., Watts C., Shanahan P., Dodd I.C., Ober E., Ashton R., Webster C., White R., Hawkesford M.J. Methods to estimate changes in soil water for phenotyping root activity in the field. Plant Soil. 2017;415:407–422. PubMed PMC

Liu X., Dong X., Xue Q., Leskovar D.I., Jifon J., Butnor J.R., Marek T. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field. Plant Soil. 2017;423:517–531.

Delgado A., Hays D.B., Bruton R.K., Ceballos H., Novo A., Boi E., Selvaraj M.G. Ground penetrating radar: a case study for estimating root bulking rate in cassava (Manihot esculenta Crantz) Plant Methods. 2017;13:65. PubMed PMC

Jarrahi M. Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators. IEEE Trans. Terahertz Sci. Technol. 2015;5:391–397.

Breitenstein B., Scheller M., Shakfa M.K., Kinder T., Müller-Wirts T., Koch M., Selmar D. Introducing terahertz technology into plant biology: a novel method to monitor changes in leaf water status. J. Appl. Bot. Food Qual. 2011;84:158–161.

Born N., Behringer D., Liepelt S., Beyer S., Schwerdtfeger M., Ziegenhagen B., Koch M. Monitoring plant drought stress response using terahertz time-domain spectroscopy. Plant Physiol. 2014:113. 233601. PubMed PMC

Gente R., Koch M. Monitoring leaf water content with THz and sub-THz waves. Plant Methods. 2015;11:15. PubMed PMC

Krügener K., Busch S., Soltani A., Schwerdtfeger M., Castro-Camus E., Koch M., Viöl W. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2017 42nd International Conference on, IEEE. 2017. THz time domain spectroscopy—Non-destructive evaluation of material detachments from exposed natural stone and ceramic objects; pp. 1–2.

Holl P.M., Reinhard F. Holography of wi-fi radiation. Phys. Rev. Lett. 2017;118 PubMed

Jones H.G., Hutchinson P.A., May T., Jamali H., Deery D.M. A practical method using a network of fixed infrared sensors for estimating crop canopy conductance and evaporation rate. Biosys. Eng. 2018;165:59–69.

Berni J., Zarco-Tejada P., Sepulcre-Cantó G., Fereres E., Villalobos F. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sens. Environ. 2009;113:2380–2388.

Zarco-Tejada P.J., González-Dugo V., Berni J.A. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012;117:322–337.

Paulus S., Behmann J., Mahlein A.-K., Plümer L., Kuhlmann H. Low-cost 3D systems: suitable tools for plant phenotyping. Sensors. 2014;14:3001–3018. PubMed PMC

Barmeier G., Mistele B., Schmidhalter U. Referencing laser and ultrasonic height measurements of barleycultivars by using a herbometre as standard. Crop Pasture Sci. 2017;67:1215–1222.

Dobrescu A., Scorza L.C., Tsaftaris S.A., McCormick A.J. A “Do-It-Yourself” phenotyping system: measuring growth and morphology throughout the diel cycle in rosette shaped plants. Plant Methods. 2017;13:95. PubMed PMC

Reynolds D., Baret F., Welcker C., Bostrom A., Ball J., Cellini F., Lorence A., Chawade A., Khafif M., Noshita K., Mueller-Linow M., Zhou J., Tardieu F. What is cost-efficient phenotyping? Optimizing costs for different scenarios. Plant Sci. 2019 This issue. PubMed

Yokogawa S., Oshiyama I., Ikeda H., Ebiko Y., Hirano T., Saito S., Oinoue T., Hagimoto Y., Iwamoto H. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels. Sci. Rep. 2017;7:3832. PubMed PMC

Großkinsky D.K., Svensgaard J., Christensen S., Roitsch T. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J. Exp. Bot. 2015;66:5429–5440. PubMed

Salehi A., Jimenez-Berni J., Deery D.M., Palmer D., Holland E., Rozas-Larraondo P., Chapman S.C., Georgakopoulos D., Furbank R.T. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data. Plant Methods. 2015;11:53. PubMed PMC

Fukatsu T., Hirafuji M. Field monitoring using sensor-nodes with a web server. JRM. 2005;17:164–172.

Utsushi H., Abe A., Tamiru M., Ogasawara Y., Obara T., Sato E., Ochiai Y., Terauchi R., Takagi H. WIPPER: an accurate and efficient field phenotyping platform for large-scale applications. Breed. Sci. 2015;65:285–289. PubMed PMC

Brichet N., Fournier C., Turc O., Strauss O., Artzet S., Pradal C., Welcker C., Tardieu F., Cabrera-Bosquet L. A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform. Plant Methods. 2017;13:96. PubMed PMC

Cabrera-Bosquet L., Fournier C., Brichet N., Welcker C., Suard B., Tardieu F. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol. 2016;212:269–281. PubMed

Chen T.W., Cabrera-Bosquet L., Alvarez Prado S., Perez R., Artzet S., Pradal C., Coupel-Ledru A., Fournier C., Tardieu F. Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies. J. Exp. Bot. 2018 ery309-ery309. PubMed PMC

Adam-Blondon A.F., Alaux M., Pommier C., Cantu D., Cheng Z.M., Cramer G.R., Davies C., Delrot S., Deluc L., Di Gaspero G., Grimplet J., Fennell A., Londo J.P., Kersey P., Mattivi F., Naithani S., Neveu P., Nikolski M., Pezzotti M., Reisch B.I., Töpfer R., Vivier M.A., Ware D., Quesneville H. Towards an open grapevine information system. Hortic. Res. 2016;3:16056. PubMed PMC

Hartmann A., Czauderna T., Hoffmann R., Stein N., Schreiber F. HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinformatics. 2011;12:148. PubMed PMC

Klukas C., Chen D., Pape J.-M. Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. Plant Physiol. 2014;165:506–518. PubMed PMC

Neveu P., Tireau A., Hilgert N., Nègre V., Mineau-Cesari J., Brichet N., Chapuis R., Sanchez I., Pommier C., Charnomordic B., Tardieu F., Cabrera-Bosquet L. Dealing with multi-source and multi-scale information in plant phenomics: the ontology-driven Phenotyping Hybrid Information System. New Phytol. 2019;221:588–601. PubMed PMC

Krajewski P., Chen D., Ćwiek H., van Dijk A.D.J., Fiorani F., Kersey P., Klukas C., Lange M., Markiewicz A., Nap J.P., van Oeveren J., Pommier C., Scholz U., van Schriek M., Usadel B., Weise S. Towards recommendations for metadata and data handling in plant phenotyping. J. Exp. Bot. 2015;66:5417–5427. PubMed

Higdon R., Haynes W., Stanberry L., Stewart E., Yandl G., Howard C., Broomall W., Kolker N., Kolker E. Unraveling the complexities of life sciences data. Big Data. 2013;1:42–50. PubMed

Gustafson A., Erdmann J., Milligan M., Onsongo G., Pardey P., Prather T., Silverstein K., Wilgenbusch J., Zhang Y. A platform for computationally advanced collaborative agroInformatics data discovery and analysis. Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact. 2017:2.

Junker A., Muraya M.M., Weigelt-Fischer K., Arana-Ceballos F., Klukas C., Melchinger A.E., Meyer R.C., Riewe D., Altmann T. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Front. Plant Sci. 2014;5:770. PubMed PMC

Ćwiek-Kupczyńska H., Altmann T., Arend D., Arnaud E., Chen D., Cornut G., Fiorani F., Frohmberg W., Junker A., Klukas C., Lange M., Mazurek C., Nafissi A., Neveu P., van Oeveren J., Pommier C., Poorter H., Rocca-Serra P., Sansone S.-A., Scholz U., van Schriek M., Seren Ü., Usadel B., Weise S., Kersey P., Krajewski P. Measures for interoperability of phenotypic data: minimum information requirements and formatting. Plant Methods. 2016;12:44. PubMed PMC

Arend D., Lange M., Chen J., Colmsee C., Flemming S., Hecht D., Scholz U. e!DAL--a framework to store, share and publish research data. BMC Bioinformatics. 2014;15:214. PubMed PMC

Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.-W., da Silva Santos L.B., Bourne P.E., Bouwman J., Brookes A.J., Clark T., Crosas M., Dillo I., Dumon O., Edmunds S., Evelo C.T., Finkers R., Gonzalez-Beltran A., Gray A.J.G., Groth P., Goble C., Grethe J.S., Heringa J., ’t Hoen P.A.C., Hooft R., Kuhn T., Kok R., Kok J., Lusher S.J., Martone M.E., Mons A., Packer A.L., Persson B., Rocca-Serra P., Roos M., van Schaik R., Sansone S.-A., Schultes E., Sengstag T., Slater T., Strawn G., Swertz M.A., Thompson M., van der Lei J., van Mulligen E., Velterop J., Waagmeester A., Wittenburg P., Wolstencroft K., Zhao J., Mons B. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016;3 PubMed PMC

Mungall C.J., Gkoutos G.V., Smith C.L., Haendel M.A., Lewis S.E., Ashburner M. Integrating phenotype ontologies across multiple species. Genome Biol. 2010;11:R2. PubMed PMC

Robinson P.N., Webber C. Phenotype ontologies and cross-species analysis for translational research. PLoS Genet. 2014;10 PubMed PMC

Cooper L., Meier A., Laporte M.A., Elser J.L., Mungall C., Sinn B.T., Cavaliere D., Carbon S., Dunn N.A., Smith B., Qu B., Preece J., Zhang E., Todorovic S., Gkoutos G., Doonan J.H., Stevenson D.W., Arnaud E., Jaiswal P. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics. Nucleic Acids Res. 2018;46:D1168–D1180. PubMed PMC

Shrestha R., Matteis L., Skofic M., Portugal A., McLaren G., Hyman G., Arnaud E. Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the Crop Ontology developed by the crop communities of practice. Front. Physiol. 2012;3:326. PubMed PMC

Ilic K., Kellogg E.A., Jaiswal P., Zapata F., Stevens P.F., Vincent L.P., Avraham S., Reiser L., Pujar A., Sachs M.M., Whitman N.T., McCouch S.R., Schaeffer M.L., Ware D.H., Stein L.D., Rhee S.Y. The plant structure ontology, a unified vocabulary of anatomy and morphology of a flowering plant. Plant Physiol. 2007;143:587–599. PubMed PMC

Lobet G., Draye X., Périlleux C. An online database for plant image analysis software tools. Plant Methods. 2013;9:38. PubMed PMC

Maier H., Leuchtenberger S., Fuchs H., Gailus-Durner V., de Angelis M.H. Big data in large-scale systemic mouse phenotyping. Curr. Opin. Syst. Biol. 2017;4:97–104.

Bolger M., Schwacke R., Gundlach H., Schmutzer T., Chen J., Arend D., Oppermann M., Weise S., Lange M., Fiorani F. From plant genomes to phenotypes. J. Biotechnol. 2017;261:46–52. PubMed

Brown T.B., Cheng R., Sirault X.R.R., Rungrat T., Murray K.D., Trtilek M., Furbank R.T., Badger M., Pogson B.J., Borevitz J.O. TraitCapture: genomic and environment modelling of plant phenomic data. Curr. Opin. Plant Biol. 2014;18:73–79. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...