Recessive variants in ZNF142 cause a complex neurodevelopmental disorder with intellectual disability, speech impairment, seizures, and dystonia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P50 DK096415
NIDDK NIH HHS - United States
R01 HD042601
NICHD NIH HHS - United States
R01 MH106826
NIMH NIH HHS - United States
PubMed
31036918
PubMed Central
PMC6821592
DOI
10.1038/s41436-019-0523-0
PII: S1098-3600(21)01056-X
Knihovny.cz E-zdroje
- Klíčová slova
- ataxia, childhood apraxia of speech, developmental delay, dolichocephaly, homozygosity mapping,
- MeSH
- dítě MeSH
- dospělí MeSH
- dystonie genetika MeSH
- fenotyp MeSH
- kohortové studie MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- missense mutace MeSH
- mladiství MeSH
- mutace MeSH
- neurovývojové poruchy genetika MeSH
- poruchy řeči genetika MeSH
- rodina MeSH
- rodokmen MeSH
- sekvenování exomu MeSH
- trans-aktivátory genetika metabolismus MeSH
- výpočetní biologie metody MeSH
- vývojové poruchy u dětí genetika MeSH
- záchvaty genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- trans-aktivátory MeSH
- ZNF143 protein, human MeSH Prohlížeč
PURPOSE: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.
Center for Human Disease Modeling Duke University Medical Center Durham NC USA
Department of Biological Sciences National University of Medical Sciences Rawalpindi Pakistan
Department of Neurology P J Safarik University Kosice Slovak Republic
Department of Neurology University Hospital of L Pasteur Kosice Slovak Republic
Institut für Humangenetik Helmholtz Zentrum München Munich Germany
Institut für Humangenetik Technische Universität München Munich Germany
Institute of Medical Genetics Medical School of Vienna Vienna Austria
Institute of Neurogenomics Helmholtz Zentrum München Munich Germany
Lehrstuhl für Neurogenetik Technische Universität München Munich Germany
Munich Cluster for Systems Neurology SyNergy Munich Germany
Pakistan Institute of Engineering and Applied Sciences Islamabad Pakistan
Zobrazit více v PubMed
Cassandri M, Smirnov A, Novelli F, et al. Zinc-finger proteins in health and disease. Cell death discovery. 2017;3:17071. PubMed PMC
Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Current opinion in structural biology. 2001;11(1):39–46. PubMed
Sun Y, Hu D, Liang J, et al. Association between variants of zinc finger genes and psychiatric disorders: systematic review and meta-analysis. Schizophrenia research. 2015;162(1–3):124–137. PubMed
Fattahi Z, Sheikh TI, Musante L, et al. Biallelic missense variants in ZBTB11 can cause intellectual disability in humans. Human molecular genetics. 2018;27(18):3177–3188. PubMed
Cordeddu V, Redeker B, Stellacci E, et al. Mutations in ZBTB20 cause Primrose syndrome. Nature genetics. 2014;46(8):815–817. PubMed
Mattioli F, Piton A, Gerard B, Superti-Furga A, Mandel JL, Unger S. Novel de novo mutations in ZBTB20 in Primrose syndrome with congenital hypothyroidism. American journal of medical genetics Part A. 2016;170(6):1626–1629. PubMed
Rasmussen MB, Nielsen JV, Lourenco CM, et al. Neurodevelopmental disorders associated with dosage imbalance of ZBTB20 correlate with the morbidity spectrum of ZBTB20 candidate target genes. Journal of medical genetics. 2014;51(9):605–613. PubMed
Herve B, Fauvert D, Dard R, et al. The emerging microduplication 3q13.31: Expanding the genotype-phenotype correlations of the reciprocal microdeletion 3q13.31 syndrome. European journal of medical genetics. 2016;59(9):463–469. PubMed
Baxter AL, Vivian JL, Hagelstrom RT, et al. A Novel Partial Duplication of ZEB2 and Review of ZEB2 Involvement in Mowat-Wilson Syndrome. Molecular syndromology. 2017;8(4):211–218. PubMed PMC
Yuan H, Zhang L, Chen M, Zhu J, Meng Z, Liang L. A de novo triplication on 2q22.3 including the entire ZEB2 gene associated with global developmental delay, multiple congenital anomalies and behavioral abnormalities. Molecular cytogenetics. 2015;8:99. PubMed PMC
Buraniqi E, Moodley M. ZEB2 gene mutation and duplication of 22q11.23 in Mowat-Wilson syndrome. Journal of child neurology. 2015;30(1):32–36. PubMed
Ghoumid J, Drevillon L, Alavi-Naini SM, et al. ZEB2 zinc-finger missense mutations lead to hypomorphic alleles and a mild Mowat-Wilson syndrome. Human molecular genetics. 2013;22(13):2652–2661. PubMed
Domingo A, Erro R, Lohmann K. Novel Dystonia Genes: Clues on Disease Mechanisms and the Complexities of High-Throughput Sequencing. Movement disorders : official journal of the Movement Disorder Society. 2016;31(4):471–477. PubMed
Gabriele M, Vulto-van Silfhout AT, Germain PL, et al. YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction. American journal of human genetics. 2017;100(6):907–925. PubMed PMC
Fuchs T, Gavarini S, Saunders-Pullman R, et al. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nature genetics. 2009;41(3):286–288. PubMed
Xiromerisiou G, Houlden H, Scarmeas N, et al. THAP1 mutations and dystonia phenotypes: genotype phenotype correlations. Movement disorders : official journal of the Movement Disorder Society. 2012;27(10):1290–1294. PubMed PMC
Zakirova Z, Fanutza T, Bonet J, et al. Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions. PLoS genetics. 2018;14(1):e1007169. PubMed PMC
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Human mutation. 2015;36(10):928–930. PubMed PMC
Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Current protocols in bioinformatics. 2013;43:11 10 11–33. PubMed PMC
Seelow D, Schuelke M, Hildebrandt F, Nurnberg P. HomozygosityMapper--an interactive approach to homozygosity mapping. Nucleic acids research. 2009;37(Web Server issue):W593–599. PubMed PMC
Nellhaus G Head circumference from birth to eighteen years. Practical composite international and interracial graphs. Pediatrics. 1968;41(1):106–114. PubMed
Zeng WQ, Al-Yamani E, Acierno JS Jr., et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. American journal of human genetics. 2005;77(1):16–26. PubMed PMC
Debs R, Depienne C, Rastetter A, et al. Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Archives of neurology. 2010;67(1):126–130. PubMed
Woods CG, Cox J, Springell K, et al. Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. American journal of human genetics. 2006;78(5):889–896. PubMed PMC
Kervestin S, Jacobson A. NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol. 2012;13(11):700–712. PubMed PMC
Lindeboom RG, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nature genetics. 2016;48(10):1112–1118. PubMed PMC
Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology. 2012;62(3):1230–1241. PubMed PMC
Papadopoulos JS, Agarwala R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics (Oxford, England). 2007;23(9):1073–1079. PubMed
Hempel M, Cremer K, Ockeloen CW, et al. De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment. American journal of human genetics. 2015;97(3):493–500. PubMed PMC
Kambouris M, Maroun RC, Ben-Omran T, et al. Mutations in zinc finger 407 [ZNF407] cause a unique autosomal recessive cognitive impairment syndrome. Orphanet journal of rare diseases. 2014;9:80. PubMed PMC
Talkowski ME, Rosenfeld JA, Blumenthal I, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149(3):525–537. PubMed PMC