Association of Office and Ambulatory Blood Pressure With Mortality and Cardiovascular Outcomes

. 2019 Aug 06 ; 322 (5) : 409-420.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31386134

Grantová podpora
P30 AG066546 NIA NIH HHS - United States
R01 AG036469 NIA NIH HHS - United States
R03 AG054186 NIA NIH HHS - United States

IMPORTANCE: Blood pressure (BP) is a known risk factor for overall mortality and cardiovascular (CV)-specific fatal and nonfatal outcomes. It is uncertain which BP index is most strongly associated with these outcomes. OBJECTIVE: To evaluate the association of BP indexes with death and a composite CV event. DESIGN, SETTING, AND PARTICIPANTS: Longitudinal population-based cohort study of 11 135 adults from Europe, Asia, and South America with baseline observations collected from May 1988 to May 2010 (last follow-ups, August 2006-October 2016). EXPOSURES: Blood pressure measured by an observer or an automated office machine; measured for 24 hours, during the day or the night; and the dipping ratio (nighttime divided by daytime readings). MAIN OUTCOMES AND MEASURES: Multivariable-adjusted hazard ratios (HRs) expressed the risk of death or a CV event associated with BP increments of 20/10 mm Hg. Cardiovascular events included CV mortality combined with nonfatal coronary events, heart failure, and stroke. Improvement in model performance was assessed by the change in the area under the curve (AUC). RESULTS: Among 11 135 participants (median age, 54.7 years, 49.3% women), 2836 participants died (18.5 per 1000 person-years) and 2049 (13.4 per 1000 person-years) experienced a CV event over a median of 13.8 years of follow-up. Both end points were significantly associated with all single systolic BP indexes (P < .001). For nighttime systolic BP level, the HR for total mortality was 1.23 (95% CI, 1.17-1.28) and for CV events, 1.36 (95% CI, 1.30-1.43). For the 24-hour systolic BP level, the HR for total mortality was 1.22 (95% CI, 1.16-1.28) and for CV events, 1.45 (95% CI, 1.37-1.54). With adjustment for any of the other systolic BP indexes, the associations of nighttime and 24-hour systolic BP with the primary outcomes remained statistically significant (HRs ranging from 1.17 [95% CI, 1.10-1.25] to 1.87 [95% CI, 1.62-2.16]). Base models that included single systolic BP indexes yielded an AUC of 0.83 for mortality and 0.84 for the CV outcomes. Adding 24-hour or nighttime systolic BP to base models that included other BP indexes resulted in incremental improvements in the AUC of 0.0013 to 0.0027 for mortality and 0.0031 to 0.0075 for the composite CV outcome. Adding any systolic BP index to models already including nighttime or 24-hour systolic BP did not significantly improve model performance. These findings were consistent for diastolic BP. CONCLUSIONS AND RELEVANCE: In this population-based cohort study, higher 24-hour and nighttime blood pressure measurements were significantly associated with greater risks of death and a composite CV outcome, even after adjusting for other office-based or ambulatory blood pressure measurements. Thus, 24-hour and nighttime blood pressure may be considered optimal measurements for estimating CV risk, although statistically, model improvement compared with other blood pressure indexes was small.

Asociación Española Primera en Salud Montevideo Uruguay

Cambridge University Hospitals Addenbrook's Hospital Cambridge United Kingdom

Cardiovascular Research Institute Maastricht Maastricht University Maastricht the Netherlands

Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluation Shanghai Institute of Hypertension Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China

Centre for Molecular and Vascular Biology KU Leuven Department of Cardiovascular Sciences University of Leuven Leuven Belgium

Centro de Nefrología and Departamento de Fisiopatología Hospital de Clínicas Universidad de la República Montevideo Uruguay

Conway Institute of Biomolecular and Biomedical Research University College Dublin Dublin Ireland

Department of Biomedical Sciences Division of Neuroscience and Department of Human Genetics University of Texas Rio Grande Valley School of Medicine Brownsville

Department of Cardiology Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai China

Department of Hygiene and Public Health Teikyo University School of Medicine Tokyo Japan

Department of Medicine Glostrup Hospital University of Copenhagen Copenhagen Denmark

Department of Medicine University of Padua Padua Italy

Faculty of Medicine Charles University Pilsen Czech Republic

Hypertension Unit Department of Hypertension and Diabetology Medical University of Gdańsk Gdańsk Poland

Institute of Internal and Preventive Medicine and Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences Novosibirsk Russian Federation

Laboratorio de Neurociencias and Instituto Cardiovascular Universidad del Zulia Maracaibo Venezuela

Section of Geriatrics Department of Public Health and Caring Sciences Uppsala University Uppsala Sweden

Studies Coordinating Centre Research Unit Hypertension and Cardiovascular Epidemiology KU Leuven Department of Cardiovascular Sciences University of Leuven Leuven Belgium

The 1st Department of Cardiology Interventional Electrocardiology and Hypertension Jagiellonian University Medical College Krakow Poland

The Steno Diabetes Center Copenhagen Gentofte and Center for Health Capital Region of Denmark Copenhagen Denmark

Tohoku Institute for Management of Blood Pressure Sendai Japan

Komentář v

PubMed

Komentář v

PubMed

Zobrazit více v PubMed

Leung AA, Nerenberg K, Daskalopoulou SS, et al. ; CHEP Guidelines Task Force . Hypertension Canada’s 2016 Canadian Hypertension Education Program guidelines for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. 2016;32(5):569-588. doi:10.1016/j.cjca.2016.02.066 PubMed DOI

Whelton PK, Carey RM, Aronow WS, et al. . 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71(19):e127-e248. doi:10.1016/j.jacc.2017.11.006 PubMed DOI

National Institute for Health and Clinical Excellence (NICE) Hypertension in adults: diagnosis and management. http://www.nice.org.uk/guidance/CG127. Published August 2011. Updated November 2016. Accessed June 3, 2019.

Williams B, Mancia G, Spiering W, et al. ; ESC Scientific Document Group . 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-3104. doi:10.1093/eurheartj/ehy339 PubMed DOI

Shimamoto K, Ando K, Fujita T, et al. ; Japanese Society of Hypertension Committee for Guidelines for the Management of Hypertension . The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2014). Hypertens Res. 2014;37(4):253-390. doi:10.1038/hr.2014.20 PubMed DOI

Liu LS. Writing Group of 2010 Chinese guidelines for the management of hypertension. 2010 Chinese guidelines for the management of hypertension [in Chinese]. Chin J Hypertens. 2011;19(8):701-742.

Staessen JA, Thijs L, Fagard R, et al. ; Systolic Hypertension in Europe Trial Investigators . Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. JAMA. 1999;282(6):539-546. doi:10.1001/jama.282.6.539 PubMed DOI

Dolan E, Stanton A, Thijs L, et al. . Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46(1):156-161. doi:10.1161/01.HYP.0000170138.56903.7a PubMed DOI

Ben-Dov IZ, Kark JD, Ben-Ishay D, Mekler J, Ben-Arie L, Bursztyn M. Predictors of all-cause mortality in clinical ambulatory monitoring: unique aspects of blood pressure during sleep. Hypertension. 2007;49(6):1235-1241. doi:10.1161/HYPERTENSIONAHA.107.087262 PubMed DOI

Myers MG, Valdivieso M, Kiss A. Use of automated office blood pressure measurement to reduce the white coat response. J Hypertens. 2009;27(2):280-286. doi:10.1097/HJH.0b013e32831b9e6b PubMed DOI

O’Brien E, Sheridan J, O’Malley K. Dippers and non-dippers. Lancet. 1988;2(8607):397. doi:10.1016/S0140-6736(88)92867-X PubMed DOI

Hernández-del Rey R, Martin-Baranera M, Sobrino J, et al. ; Spanish Society of Hypertension Ambulatory Blood Pressure Monitoring Registry Investigators . Reproducibility of the circadian blood pressure pattern in 24-h versus 48-h recordings: the Spanish Ambulatory Blood Pressure Monitoring Registry. J Hypertens. 2007;25(12):2406-2412. doi:10.1097/HJH.0b013e3282effed1 PubMed DOI

McGowan NJ, Gough K, Padfield PL. Nocturnal dipping is reproducible in the long term. Blood Press Monit. 2009;14(5):185-189. doi:10.1097/MBP.0b013e32832ff4e1 PubMed DOI

Thijs L, Hansen TW, Kikuya M, et al. ; IDACO Investigators . The International Database of Ambulatory Blood Pressure in relation to Cardiovascular Outcome (IDACO): protocol and research perspectives. Blood Press Monit. 2007;12(4):255-262. doi:10.1097/MBP.0b013e3280f813bc PubMed DOI

World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053 PubMed DOI

Fagard R, Brguljan J, Thijs L, Staessen J. Prediction of the actual awake and asleep blood pressures by various methods of 24 h pressure analysis. J Hypertens. 1996;14(5):557-563. doi:10.1097/00004872-199605000-00003 PubMed DOI

Yang WY, Thijs L, Zhang ZY, et al. ; International Database; on Ambulatory blood pressure in relation to Cardiovascular Outcomes (IDACO) Investigators . Evidence-based proposal for the number of ambulatory readings required for assessing blood pressure level in research settings: an analysis of the IDACO database. Blood Press. 2018;27(6):341-350. doi:10.1080/08037051.2018.1476057 PubMed DOI

Franklin SS, Larson MG, Khan SA, et al. . Does the relation of blood pressure to coronary heart disease risk change with aging? the Framingham Heart Study. Circulation. 2001;103(9):1245-1249. doi:10.1161/01.CIR.103.9.1245 PubMed DOI

O’Brien E, Parati G, Stergiou G, et al. ; European Society of Hypertension Working Group on Blood Pressure Monitoring . European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31(9):1731-1768. doi:10.1097/HJH.0b013e328363e964 PubMed DOI

Hansen TW, Jeppesen J, Rasmussen S, Ibsen H, Torp-Pedersen C. Ambulatory blood pressure monitoring and risk of cardiovascular disease: a population based study. Am J Hypertens. 2006;19(3):243-250. doi:10.1016/j.amjhyper.2005.09.018 PubMed DOI

Ingelsson E, Björklund-Bodegård K, Lind L, Arnlöv J, Sundström J. Diurnal blood pressure pattern and risk of congestive heart failure. JAMA. 2006;295(24):2859-2866. doi:10.1001/jama.295.24.2859 PubMed DOI

Pencina MJ, D’Agostino RB, Zdrojewski T, et al. . Apolipoprotein B improves risk assessment of future coronary heart disease in the Framingham Heart Study beyond LDL-C and non-HDL-C. Eur J Prev Cardiol. 2015;22(10):1321-1327. doi:10.1177/2047487315569411 PubMed DOI

Kuznetsova T, Staessen JA, Kawecka-Jaszcz K, et al. . Quality control of the blood pressure phenotype in the European Project on Genes in Hypertension. Blood Press Monit. 2002;7(4):215-224. doi:10.1097/00126097-200208000-00003 PubMed DOI

Hosmer DW Jr, Lemeshow S. Applied Logistic Regression. New York, NY: John Wiley & Sons; 1989:47-56.

Nyholt DR. Genetic case-control association studies—correcting for multiple testing. Hum Genet. 2001;109(5):564-567. doi:10.1007/s00439-001-0611-4 PubMed DOI

Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011;57(1):3-10. doi:10.1161/HYPERTENSIONAHA.109.133900 PubMed DOI

Smirk FH. Observations on mortality of 270 treated and 199 untreated retinal grade I and II hypertensive patients followed in all instances for 5 years. N Z Med J. 1964;63:413-443.

Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007;115(7):928-935. doi:10.1161/CIRCULATIONAHA.106.672402 PubMed DOI

Murray CJL, Ezzati M, Flaxman AD, et al. . GBD 2010: design, definitions, and metrics. Lancet. 2012;380(9859):2063-2066. doi:10.1016/S0140-6736(12)61899-6 PubMed DOI

Baker SG, Schuit E, Steyerberg EW, et al. . How to interpret a small increase in AUC with an additional risk prediction marker: decision analysis comes through. Stat Med. 2014;33(22):3946-3959. doi:10.1002/sim.6195 PubMed DOI PMC

Mieno MN, Tanaka N, Arai T, et al. . Accuracy of death certificates and assessment of factors for misclassification of underlying cause of death. J Epidemiol. 2016;26(4):191-198. doi:10.2188/jea.JE20150010 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace