Cross-Disease Innate Gene Signature: Emerging Diversity and Abundance in RA Comparing to SLE and SSc

. 2019 ; 2019 () : 3575803. [epub] 20190716

Jazyk angličtina Země Egypt Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31396542

Overactivation of the innate immune system together with the impaired downstream pathway of type I interferon-responding genes is a hallmark of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and systemic sclerosis (SSc). To date, limited data on the cross-disease innate gene signature exists among those diseases. We compared therefore an innate gene signature of Toll-like receptors (TLRs), seven key members of the interleukin (IL)1/IL1R family, and CXCL8/IL8 in peripheral blood mononuclear cells from well-defined patients with active stages of RA (n = 36, DAS28 ≥ 3.2), SLE (n = 28, SLEDAI > 6), and SSc (n = 22, revised EUSTAR index > 2.25). Emerging diversity and abundance of the innate signature in RA patients were detected: RA was characterized by the upregulation of TLR3, TLR5, IL1RAP/IL1R3, IL18R1, and SIGIRR/IL1R8 when compared to SSc (P corr < 0.02) and of TLR2, TLR5, and SIGIRR/IL1R8 when compared to SLE (P corr < 0.02). Applying the association rule analysis, six rules (combinations and expression of genes describing disease) were identified for RA (most frequently included high TLR3 and/or IL1RAP/IL1R3) and three rules for SLE (low IL1RN and IL18R1) and SSc (low TLR5 and IL18R1). This first cross-disease study identified emerging heterogeneity in the innate signature of RA patients with many upregulated innate genes compared to that of SLE and SSc.

Zobrazit více v PubMed

Cooles F. A. H., Anderson A. E., Lendrem D. W., et al. The interferon gene signature is increased in patients with early treatment-naive rheumatoid arthritis and predicts a poorer response to initial therapy. The Journal of Allergy and Clinical Immunology. 2018;141(1):445–448.e4. doi: 10.1016/j.jaci.2017.08.026. PubMed DOI PMC

Laurent P., Sisirak V., Lazaro E., et al. Innate immunity in systemic sclerosis fibrosis: recent advances. Frontiers in Immunology. 2018;9:p. 1702. doi: 10.3389/fimmu.2018.01702. PubMed DOI PMC

Pollard K. M., Escalante G. M., Huang H., et al. Induction of systemic autoimmunity by a xenobiotic requires endosomal TLR trafficking and signaling from the late endosome and endolysosome but not type I IFN. Journal of Immunology. 2017;199(11):3739–3747. doi: 10.4049/jimmunol.1700332. PubMed DOI PMC

Rodríguez-Carrio J., Alperi-López M., López P., Ballina-García F. J., Suárez A. Heterogeneity of the type I interferon signature in rheumatoid arthritis: a potential limitation for its use as a clinical biomarker. Frontiers in Immunology. 2018;8:p. 2007. doi: 10.3389/fimmu.2017.02007. PubMed DOI PMC

Joosten L. A. B., Abdollahi-Roodsaz S., Dinarello C. A., O'Neill L., Netea M. G. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nature Reviews Rheumatology. 2016;12(6):344–357. doi: 10.1038/nrrheum.2016.61. PubMed DOI

Dinarello C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological Reviews. 2018;281(1):8–27. doi: 10.1111/imr.12621. PubMed DOI PMC

Santegoets K. C. M., van Bon L., van den Berg W. B., Wenink M. H., Radstake T. R. D. J. Toll-like receptors in rheumatic diseases: are we paying a high price for our defense against bugs? FEBS Letters. 2011;585(23):3660–3666. doi: 10.1016/j.febslet.2011.04.028. PubMed DOI

Celhar T., Fairhurst A. M. Toll-like receptors in systemic lupus erythematosus: potential for personalized treatment. Frontiers in Pharmacology. 2014;5:p. 265. doi: 10.3389/fphar.2014.00265. PubMed DOI PMC

Wu Y. W., Tang W., Zuo J. P. Toll-like receptors: potential targets for lupus treatment. Acta Pharmacologica Sinica. 2015;36(12):1395–1407. doi: 10.1038/aps.2015.91. PubMed DOI PMC

Clancy R. M., Markham A. J., Buyon J. P. Endosomal Toll-like receptors in clinically overt and silent autoimmunity. Immunological Reviews. 2016;269(1):76–84. doi: 10.1111/imr.12383. PubMed DOI PMC

Pretorius E., Akeredolu O. O., Soma P., Kell D. B. Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. Experimental Biology and Medicine. 2017;242(4):355–373. doi: 10.1177/1535370216681549. PubMed DOI PMC

Bhattacharyya S., Varga J. Emerging roles of innate immune signaling and toll-like receptors in fibrosis and systemic sclerosis. Current Rheumatology Reports. 2015;17(1):p. 474. doi: 10.1007/s11926-014-0474-z. PubMed DOI

Aletaha D., Neogi T., Silman A. J., et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Annals of the Rheumatic Diseases. 2010;69(9):1580–1588. doi: 10.1136/ard.2010.138461. PubMed DOI

Hochberg M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis and Rheumatism. 1997;40(9):p. 1725. doi: 10.1002/art.1780400928. PubMed DOI

van den Hoogen F., Khanna D., Fransen J., et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Annals of the Rheumatic Diseases. 2013;72(11):1747–1755. doi: 10.1136/annrheumdis-2013-204424. PubMed DOI

Petrackova A., Horak P., Radvansky M., et al. Revealed heterogeneity in rheumatoid arthritis based on multivariate innate signature analysis. Clinical and Experimental Rheumatology. 2019;37 (in press) PubMed

Tomankova T., Kriegova E., Fillerova R., Luzna P., Ehrmann J., Gallo J. Comparison of periprosthetic tissues in knee and hip joints: differential expression of CCL3 and DC-STAMP in total knee and hip arthroplasty and similar cytokine profiles in primary knee and hip osteoarthritis. Osteoarthritis and Cartilage. 2014;22(11):1851–1860. doi: 10.1016/j.joca.2014.08.004. PubMed DOI

Falkenberg V. R., Whistler T., Murray J. R., Unger E. R., Rajeevan M. S. Identification of phosphoglycerate kinase 1 (PGK1) as a reference gene for quantitative gene expression measurements in human blood RNA. BMC Research Notes. 2011;4(1):p. 324. doi: 10.1186/1756-0500-4-324. PubMed DOI PMC

Ochodkova E., Zehnalova S., Kudelka M. Graph construction based on local representativeness. In: Cao Y., Chen J., editors. Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science, vol 10392. Springer, Cham; 2017. pp. 654–665. DOI

Moustafa R. E. Andrews curves. WIREs Computational Statistics. 2011;3(4):373–382. doi: 10.1002/wics.160. DOI

Niedzielski P., Mleczek M., Budka A., et al. A screening study of elemental composition in 12 marketable mushroom species accessible in Poland. European Food Research and Technology. 2017;243(10):1759–1771. doi: 10.1007/s00217-017-2881-7. DOI

Andrews D. F. Plots of high-dimensional data. Biometrics. 1972;28(1):125–136. doi: 10.2307/2528964. DOI

García-Osorio C., Fyfe C. Visualization of high-dimensional data via orthogonal curves. Journal of Universal Computer Science. 2005;11:1806–1819.

Myslivec J. andrews: Andrews curves. R package version 1.0. 2012. http://CRAN.R-project.org/package=andrews.

Agrawal R., Imielinski T., Swami A. N. Mining association rules between sets of items in large databases. SIGMOD '93 Proceedings of the 1993 ACM SIGMOD international conference on Management of data; May 1993; Washington, DC, USA. pp. 207–216. DOI

Hahsler M., Buchta C., Gruen B., Hornik K. arules: Mining Association Rules and Frequent Itemsets. R package version 1.6-1. 2018. https://CRAN.R-project.org/package=arules.

Brentano F., Schorr O., Gay R. E., Gay S., Kyburz D. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis and Rheumatism. 2005;52(9):2656–2665. doi: 10.1002/art.21273. PubMed DOI

Kim S. J., Chen Z., Chamberlain N. D., et al. Angiogenesis in rheumatoid arthritis is fostered directly by Toll-like receptor 5 ligation and indirectly through interleukin-17 induction. Arthritis and Rheumatism. 2013;65(8):2024–2036. doi: 10.1002/art.37992. PubMed DOI PMC

Elshabrawy H. A., Essani A. E., Szekanecz Z., Fox D. A., Shahrara S. TLRs, future potential therapeutic targets for RA. Autoimmunity Reviews. 2017;16(2):103–113. doi: 10.1016/j.autrev.2016.12.003. PubMed DOI PMC

Chamberlain N. D., Vila O. M., Volin M. V., et al. TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-α levels. Journal of Immunology. 2012;189(1):475–483. doi: 10.4049/jimmunol.1102977. PubMed DOI PMC

Kim S., Chen Z., Chamberlain N. D., et al. Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. Journal of Immunology. 2014;193(8):3902–3913. doi: 10.4049/jimmunol.1302998. PubMed DOI PMC

Cavalli G., Koenders M., Kalabokis V., et al. Treating experimental arthritis with the innate immune inhibitor interleukin-37 reduces joint and systemic inflammation. Rheumatology. 2016;55(12):2220–2229. doi: 10.1093/rheumatology/kew325. PubMed DOI PMC

Lacerte P., Brunet A., Egarnes B., Duchêne B., Brown J. P., Gosselin J. Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Research & Therapy. 2016;18(1):p. 10. doi: 10.1186/s13075-015-0901-1. PubMed DOI PMC

Aucott H., Sowinska A., Harris H. E., Lundback P. Ligation of free HMGB1 to TLR2 in the absence of ligand is negatively regulated by the C-terminal tail domain. Molecular Medicine. 2018;24(1):p. 19. doi: 10.1186/s10020-018-0021-x. PubMed DOI PMC

Dinarello C. A. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology. 2009;27(1):519–550. doi: 10.1146/annurev.immunol.021908.132612. PubMed DOI

Gasse P., Mary C., Guenon I., et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. The Journal of Clinical Investigation. 2007;117(12):3786–3799. doi: 10.1172/JCI32285. PubMed DOI PMC

Chen S. C., Tsai T. H., Chung C. H., Li W. H. Dynamic association rules for gene expression data analysis. BMC Genomics. 2015;16(1):p. 786. doi: 10.1186/s12864-015-1970-x. PubMed DOI PMC

Alagukumar S., Lawrance R. A selective analysis of microarray data using association rule mining. Procedia Computer Science. 2015;47:3–12. doi: 10.1016/j.procs.2015.03.177. DOI

Iwahashi M., Yamamura M., Aita T., et al. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis and Rheumatism. 2004;50(5):1457–1467. doi: 10.1002/art.20219. PubMed DOI

Chamberlain N. D., Kim S. J., Vila O. M., et al. Ligation of TLR7 by rheumatoid arthritis synovial fluid single strand RNA induces transcription of TNFα in monocytes. Annals of the Rheumatic Diseases. 2013;72(3):418–426. doi: 10.1136/annrheumdis-2011-201203. PubMed DOI PMC

Edwards C. K., Green J. S., Volk H. D., et al. Combined anti-tumor necrosis factor-α therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone. Frontiers in Immunology. 2012;3:p. 366. doi: 10.3389/fimmu.2012.00366. PubMed DOI PMC

Ramírez-Pérez S., de la Cruz-Mosso U., Hernández-Bello J., et al. High expression of interleukine-1 receptor antagonist in rheumatoid arthritis: association with IL1RN ∗ 2/2 genotype. Autoimmunity. 2017;50(8):468–475. doi: 10.1080/08916934.2017.1412431. PubMed DOI

Shao X. T., Feng L., Gu L. J., et al. Expression of interleukin-18, IL-18BP, and IL-18R in serum, synovial fluid, and synovial tissue in patients with rheumatoid arthritis. Clinical and Experimental Medicine. 2009;9(3):215–221. doi: 10.1007/s10238-009-0036-2. PubMed DOI

Huang Q. Q., Ma Y., Adebayo A., Pope R. M. Increased macrophage activation mediated through Toll-like receptors in rheumatoid arthritis. Arthritis and Rheumatism. 2007;56(7):2192–2201. doi: 10.1002/art.22707. PubMed DOI

Oosting M., Cheng S. C., Bolscher J. M., et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(42):E4478–E4484. doi: 10.1073/pnas.1410293111. PubMed DOI PMC

Jiang S., Li X., Hess N. J., Guan Y., Tapping R. I. TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. Journal of Immunology. 2016;196(9):3834–3841. doi: 10.4049/jimmunol.1502599. PubMed DOI PMC

Lai Y., Xue C., Liao Y., et al. Expression profiles of toll-like receptor signaling pathway related genes in microscopic polyangiitis in Chinese people. International Journal of Clinical and Experimental Pathology. 2016;9:5515–5524.

Celhar T., Yasuga H., Lee H. Y., et al. Toll-like receptor 9 deficiency breaks tolerance to RNA-associated antigens and up-regulates Toll-like receptor 7 protein in Sle1 mice. Arthritis & Rhematology. 2018;70(10):1597–1609. doi: 10.1002/art.40535. PubMed DOI PMC

Tan F. K., Zhou X., Mayes M. D., et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology. 2006;45(6):694–702. doi: 10.1093/rheumatology/kei244. PubMed DOI

Martínez-Godínez M. A., Cruz-Domínguez M. D., Jara L. J., et al. Expression of NLRP3 inflammasome, cytokines and vascular mediators in the skin of systemic sclerosis patients. The Israel Medical Association Journal. 2015;17:5–10. PubMed

Ihn H., Sato S., Fujimoto M., Kikuchi K., Takehara K. Demonstration of interleukin 8 in serum samples of patients with localized scleroderma. Archives of Dermatology. 1994;130(10):1327–1328. doi: 10.1001/archderm.1994.01690100117021. PubMed DOI

Kaplanski G. Interleukin-18: biological properties and role in disease pathogenesis. Immunological Reviews. 2018;281(1):138–153. doi: 10.1111/imr.12616. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace