High CXCR3 on Leukemic Cells Distinguishes IgHV mut from IgHV unmut in Chronic Lymphocytic Leukemia: Evidence from CD5high and CD5low Clones

. 2020 ; 2020 () : 7084268. [epub] 20200620

Jazyk angličtina Země Egypt Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32802894

Despite the shared pattern of surface antigens, neoplastic cells in chronic lymphocytic leukemia (CLL) are highly heterogeneous in CD5 expression, a marker linked to a proliferative pool of neoplastic cells. To further characterize CD5high and CD5low neoplastic cells, we assessed the chemokine receptors (CCR5, CCR7, CCR10, CXCR3, CXCR4, CXCR5) and adhesion molecules (CD54, CD62L, CD49d) on the CD5high and CD5low subpopulations, defined by CD5/CD19 coexpression, in peripheral blood of CLL patients (n = 60) subgrouped according to the IgHV mutational status (IgHV mut, n = 24; IgHV unmut, n = 36). CD5high subpopulation showed a high percentage of CXCR3 (P < 0.001), CCR10 (P = 0.001), and CD62L (P = 0.031) and high levels of CXCR5 (P = 0.005), CCR7 (P = 0.013) compared to CD5low cells expressing high CXCR4 (P < 0.001). Comparing IgHV mut and IgHV unmut patients, high levels of CXCR3 on CD5high and CD5low subpopulations were detected in the IgHV mut patients, with better discrimination in CD5low subpopulation. Levels of CXCR3 on CD5low subpopulation were associated with time to the next treatment, thus further confirming its prognostic value. Taken together, our analysis revealed higher CXCR3 expression on both CD5high and CD5low neoplastic cells in IgHV mut with a better prognosis compared to IgHV unmut patients. Contribution of CXCR3 to CLL pathophysiology and its suitability for prognostication and therapeutic exploitation deserves future investigations.

Zobrazit více v PubMed

Calissano C., Damle R. N., Hayes G., et al. In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood. 2009;114(23):4832–4842. doi: 10.1182/blood-2009-05-219634. PubMed DOI PMC

Bashford-Rogers R. J. M., Palser A. L., Hodkinson C., et al. Dynamic variation of CD5 surface expression levels within individual chronic lymphocytic leukemia clones. Experimental Hematology. 2017;46:31–37.e10. doi: 10.1016/j.exphem.2016.09.010. PubMed DOI PMC

Damle R. N., Temburni S., Calissano C., et al. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood. 2007;110(9):3352–3359. doi: 10.1182/blood-2007-04-083832. PubMed DOI PMC

Messmer B. T., Messmer D., Allen S. L., et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. The Journal of Clinical Investigation. 2005;115(3):755–764. doi: 10.1172/JCI200523409. PubMed DOI PMC

Os A., Bürgler S., Ribes A. P., et al. Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Reports. 2013;4(3):566–577. doi: 10.1016/j.celrep.2013.07.011. PubMed DOI

Herishanu Y., Pérez-Galán P., Liu D., et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563–574. doi: 10.1182/blood-2010-05-284984. PubMed DOI PMC

Friedman D. R., Guadeloupe E., Volkheimer A., Weinberg J. B. Surface CD5 protein risk stratifies chronic lymphocytic leukemia. Blood. 2016;128(22):p. 3212. doi: 10.1182/blood.V128.22.3212.3212. DOI

Calissano C., Damle R. N., Marsilio S., et al. Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells. Molecular Medicine. 2011;17(11-12):1374–1382. doi: 10.2119/molmed.2011.00360. PubMed DOI PMC

Pasikowska M., Walsby E., Apollonio B., et al. Phenotype and immune function of lymph node and peripheral blood CLL cells are linked to transendothelial migration. Blood. 2016;128(4):563–573. doi: 10.1182/blood-2016-01-683128. PubMed DOI

Hamblin T. J., Davis Z., Gardiner A., Oscier D. G., Stevenson F. K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–1854. doi: 10.1182/blood.V94.6.1848. PubMed DOI

Binet J.-L. Perspectives on the use of new diagnostic tools in the treatment of chronic lymphocytic leukemia. Blood. 2005;107(3):859–861. doi: 10.1182/blood-2005-04-1677. PubMed DOI

Stamatopoulos K., Belessi C., Hadzidimitriou A., et al. Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood. 2005;106(10):3575–3583. doi: 10.1182/blood-2005-04-1511. PubMed DOI

Hallek M., Cheson B. D., Catovsky D., et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–5456. doi: 10.1182/blood-2007-06-093906. PubMed DOI PMC

Manukyan G., Turcsanyi P., Mikulkova Z., et al. Dynamic changes in HLA-DR expression during short-term and long-term ibrutinib treatment in patients with chronic lymphocytic leukemia. Leukemia Research. 2018;72:113–119. doi: 10.1016/j.leukres.2018.08.006. PubMed DOI

Kriegova E., Manukyan G., Mikulkova Z., et al. Gender-related differences observed among immune cells in synovial fluid in knee osteoarthritis. Osteoarthritis and Cartilage. 2018;26(9):1247–1256. doi: 10.1016/j.joca.2018.04.016. PubMed DOI

Ochodkova E., Zehnalova S., Kudelka M. Graph Construction Based on Local Representativeness. In: Cao Y., Chen J., editors. Computing and Combinatorics. COCOON 2017. Cham: Springer; 2017. (Lecture Notes in Computer Science). DOI

Turcsanyi P., Kriegova E., Kudelka M., et al. Improving risk-stratification of patients with chronic lymphocytic leukemia using multivariate patient similarity networks. Leukemia Research. 2019;79:60–68. doi: 10.1016/j.leukres.2019.02.005. PubMed DOI

Petrackova A., Horak P., Radvansky M., et al. Cross-disease innate gene signature: emerging diversity and abundance in RA comparing to SLE and SSc. Journal of Immunology Research. 2019;2019:10. doi: 10.1155/2019/3575803. PubMed DOI PMC

Pavlasova G., Borsky M., Seda V., et al. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis. Blood. 2016;128(12):1609–1613. doi: 10.1182/blood-2016-04-709519. PubMed DOI PMC

Pavlasova G., Borsky M., Svobodova V., et al. Rituximab primarily targets an intra-clonal BCR signaling proficient CLL subpopulation characterized by high CD20 levels. Leukemia. 2018;32(9):2028–2031. doi: 10.1038/s41375-018-0211-0. PubMed DOI

Burger J. A. Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting. Seminars in Cancer Biology. 2010;20(6):424–430. doi: 10.1016/j.semcancer.2010.09.005. PubMed DOI

Majid A., Lin T. T., Best G., et al. CD49d is an independent prognostic marker that is associated with CXCR4 expression in CLL. Leukemia Research. 2011;35(6):750–756. doi: 10.1016/j.leukres.2010.10.022. PubMed DOI

Rosenwald A., Alizadeh A. A., Widhopf G., et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. The Journal of Experimental Medicine. 2001;194(11):1639–1648. doi: 10.1084/jem.194.11.1639. PubMed DOI PMC

Oakes C. C., Seifert M., Assenov Y., et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nature Genetics. 2016;48(3):253–264. doi: 10.1038/ng.3488. PubMed DOI PMC

Burns A., Alsolami R., Becq J., et al. Whole-genome sequencing of chronic lymphocytic leukaemia reveals distinct differences in the mutational landscape between IgHVmut and IgHVunmut subgroups. Leukemia. 2018;32(2):332–342. doi: 10.1038/leu.2017.177. PubMed DOI PMC

Ganghammer S., Gutjahr J., Hutterer E., et al. Combined CXCR3/CXCR4 measurements are of high prognostic value in chronic lymphocytic leukemia due to negative co-operativity of the receptors. Haematologica. 2016;101(3):e99–102. doi: 10.3324/haematol.2015.133470. PubMed DOI PMC

Ocana E., Delgado-Perez L., Campos-Caro A., et al. The prognostic role of CXCR3 expression by chronic lymphocytic leukemia B cells. Haematologica. 2007;92(3):349–356. doi: 10.3324/haematol.10649. PubMed DOI

Watts A. O., van Lipzig M. M., Jaeger W. C., et al. Identification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes. British Journal of Pharmacology. 2013;168(7):1662–1674. doi: 10.1111/bph.12064. PubMed DOI PMC

Gary-Gouy H., Harriague J., Bismuth G., Platzer C., Schmitt C., Dalloul A. H. Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood. 2002;100(13):4537–4543. doi: 10.1182/blood-2002-05-1525. PubMed DOI

Hippen K. L., Tze L. E., Behrens T. W. CD5 maintains tolerance in anergic B cells. The Journal of Experimental Medicine. 2000;191(5):883–890. doi: 10.1084/jem.191.5.883. PubMed DOI PMC

Muggen A. F., et al. Targeting signaling pathways in chronic lymphocytic leukemia. Current Cancer Drug Targets. 2016;16(8):669–688. doi: 10.2174/1568009616666160408145623. PubMed DOI

Burger J. A., Montserrat E. Coming full circle: 70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signaling. Blood. 2013;121(9):1501–1509. doi: 10.1182/blood-2012-08-452607. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace