WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
SP/10/10/28431
British Heart Foundation - United Kingdom
MC_U120097112
Medical Research Council - United Kingdom
FS/11/25/28740
British Heart Foundation - United Kingdom
CH/1992027/7163
British Heart Foundation - United Kingdom
MC_U120085815
Medical Research Council - United Kingdom
PubMed
31399586
PubMed Central
PMC6689010
DOI
10.1038/s41467-019-11551-9
PII: 10.1038/s41467-019-11551-9
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- extracelulární matrix - proteiny metabolismus MeSH
- fibróza genetika metabolismus MeSH
- genetická predispozice k nemoci * genetika MeSH
- genové regulační sítě * MeSH
- kardiomyopatie genetika metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- myši transgenní MeSH
- myši MeSH
- nemoci srdce genetika metabolismus MeSH
- protein - isoformy MeSH
- protein Smad2 genetika metabolismus MeSH
- regulace genové exprese MeSH
- senioři MeSH
- transformující růstový faktor beta metabolismus MeSH
- ubikvitinligasy genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- betaIG-H3 protein MeSH Prohlížeč
- extracelulární matrix - proteiny MeSH
- protein - isoformy MeSH
- protein Smad2 MeSH
- Smad2 protein, mouse MeSH Prohlížeč
- transformující růstový faktor beta MeSH
- ubikvitinligasy MeSH
- Wwp2 protein, mouse MeSH Prohlížeč
Cardiac fibrosis is a final common pathology in inherited and acquired heart diseases that causes cardiac electrical and pump failure. Here, we use systems genetics to identify a pro-fibrotic gene network in the diseased heart and show that this network is regulated by the E3 ubiquitin ligase WWP2, specifically by the WWP2-N terminal isoform. Importantly, the WWP2-regulated pro-fibrotic gene network is conserved across different cardiac diseases characterized by fibrosis: human and murine dilated cardiomyopathy and repaired tetralogy of Fallot. Transgenic mice lacking the N-terminal region of the WWP2 protein show improved cardiac function and reduced myocardial fibrosis in response to pressure overload or myocardial infarction. In primary cardiac fibroblasts, WWP2 positively regulates the expression of pro-fibrotic markers and extracellular matrix genes. TGFβ1 stimulation promotes nuclear translocation of the WWP2 isoforms containing the N-terminal region and their interaction with SMAD2. WWP2 mediates the TGFβ1-induced nucleocytoplasmic shuttling and transcriptional activity of SMAD2.
Animal Gene Editing Laboratory BRC A*STAR20 Biopolis Way Singapore 138668 Republic of Singapore
Berlin Institute of Health 10178 Berlin Germany
Bristol Heart Institute Bristol Medical School University of Bristol Bristol BS2 89HW UK
Cardiovascular Research Centre Royal Brompton and Harefield NHS Trust London SW3 6NP UK
Centro Nacional de Investigaciones Cardiovasculares CNIC 28029 Madrid Spain
Charité Universitätsmedizin 10117 Berlin Germany
Department of Emergency and Organ Transplantation University of Bari 70124 Bari Italy
Department of Medical Genetics University of Cambridge Cambridge CB2 0QQ UK
Division of Brain Sciences Imperial College Faculty of Medicine London W12 0NN UK
DZHK Partner Site Berlin 13347 Berlin Germany
Institute of Physiology Czech Academy of Sciences 142 00 Praha 4 Czech Republic
MRC Biostatistics Unit University of Cambridge Cambridge CB2 0SR UK
MRC London Institute of Medical Sciences Imperial College London W12 0NN UK
National Heart and Lung Institute Imperial College London London SW7 2AZ UK
National Heart Centre Singapore Singapore 169609 Republic of Singapore
SOC di Anatomia Patologica Ospedale San Giovanni di Dio 50123 Florence Italy
The Alan Turing Institute London NW1 2DB UK
Unit of Human Evolutionary Genetics Institute Pasteur 75015 Paris France
Zobrazit více v PubMed
Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 2016;118:1021–1040. doi: 10.1161/CIRCRESAHA.115.306565. PubMed DOI PMC
Gulati A, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309:896–908. doi: 10.1001/jama.2013.1363. PubMed DOI
Garfinkel AC, Seidman JG, Seidman CE. Genetic pathogenesis of hypertrophic and dilated cardiomyopathy. Heart Fail. Clin. 2018;14:139–146. doi: 10.1016/j.hfc.2017.12.004. PubMed DOI PMC
Harvey PA, Leinwand LA. The cell biology of disease: cellular mechanisms of cardiomyopathy. J. Cell Biol. 2011;194:355–365. doi: 10.1083/jcb.201101100. PubMed DOI PMC
Gyongyosi M, et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur. J. Heart Fail. 2017;19:177–191. doi: 10.1002/ejhf.696. PubMed DOI PMC
Reddy S, et al. miR-21 is associated with fibrosis and right ventricular failure. JCI Insight. 2017;2:91625. doi: 10.1172/jci.insight.91625. PubMed DOI PMC
Rockey DC, Bell PD, Hill JA. Fibrosis—a common pathway to organ injury and failure. N. Engl. J. Med. 2015;372:1138–1149. doi: 10.1056/NEJMra1300575. PubMed DOI
Baum J, Duffy HS. Fibroblasts and myofibroblasts: what are we talking about? J. Cardiovasc. Pharm. 2011;57:376–379. doi: 10.1097/FJC.0b013e3182116e39. PubMed DOI PMC
Schafer S, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110–115. doi: 10.1038/nature24676. PubMed DOI PMC
Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ. Res. 2015;116:1269–1276. doi: 10.1161/CIRCRESAHA.116.305381. PubMed DOI
Wang Q, et al. Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenes Tissue Repair. 2011;4:4. doi: 10.1186/1755-1536-4-4. PubMed DOI PMC
Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-beta, WNT, and YAP/TAZ converge. Front. Med. (Lausanne) 2015;2:59. PubMed PMC
Leask A. TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc. Res. 2007;74:207–212. doi: 10.1016/j.cardiores.2006.07.012. PubMed DOI
Ross S, Hill CS. How the Smads regulate transcription. Int. J. Biochem. Cell Biol. 2008;40:383–408. doi: 10.1016/j.biocel.2007.09.006. PubMed DOI
Fan Z, Guan J. Antifibrotic therapies to control cardiac fibrosis. Biomater. Res. 2016;20:13. doi: 10.1186/s40824-016-0060-8. PubMed DOI PMC
Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ. Res. 2010;106:1675–1680. doi: 10.1161/CIRCRESAHA.110.217737. PubMed DOI
Gyorfi AH, Matei AE, Distler JHW. Targeting TGF-beta signaling for the treatment of fibrosis. Matrix Biol. 2018;68-69:8–27. doi: 10.1016/j.matbio.2017.12.016. PubMed DOI
Moreno-Moral A, Pesce F, Behmoaras J, Petretto E. Systems genetics as a tool to identify master genetic regulators in complex disease. Methods Mol. Biol. 2017;1488:337–362. doi: 10.1007/978-1-4939-6427-7_16. PubMed DOI
Hubner N, et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 2005;37:243–253. doi: 10.1038/ng1522. PubMed DOI
Petretto E, et al. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat. Genet. 2008;40:546–552. doi: 10.1038/ng.134. PubMed DOI PMC
Mancini M, et al. Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat. Basic Res. Cardiol. 2013;108:316. doi: 10.1007/s00395-012-0316-y. PubMed DOI
Langley SR, et al. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans. Cardiovasc. Res. 2013;97:653–665. doi: 10.1093/cvr/cvs329. PubMed DOI PMC
Pravenec M, et al. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat. Genet. 2008;40:952–954. doi: 10.1038/ng.164. PubMed DOI
Moreno-Moral A, Mancini M, D’Amati G, Camici P, Petretto E. Transcriptional network analysis for the regulation of left ventricular hypertrophy and microvascular remodeling. J. Cardiovasc. Transl. Res. 2013;6:931–944. doi: 10.1007/s12265-013-9504-x. PubMed DOI
Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Heinig M, et al. Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy. Genome Biol. 2017;18:170. doi: 10.1186/s13059-017-1286-z. PubMed DOI PMC
Rotival M, Petretto E. Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits. Brief. Funct. Genomics. 2014;13:66–78. doi: 10.1093/bfgp/elt030. PubMed DOI
Zhao T, et al. Platelet-derived growth factor-D promotes fibrogenesis of cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 2013;304:H1719–H1726. doi: 10.1152/ajpheart.00130.2013. PubMed DOI PMC
Pradegan N, et al. Myocardial histopathology in late-repaired and unrepaired adults with tetralogy of Fallot. Cardiovasc. Pathol. 2016;25:225–231. doi: 10.1016/j.carpath.2016.02.001. PubMed DOI
Burke MA, et al. Molecular profiling of dilated cardiomyopathy that progresses to heart failure. JCI Insight. 2016;1:e86898. doi: 10.1172/jci.insight.86898. PubMed DOI PMC
Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19:1745–1754. doi: 10.1093/emboj/19.8.1745. PubMed DOI PMC
Lachmann A, et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics. 2010;26:2438–2444. doi: 10.1093/bioinformatics/btq466. PubMed DOI PMC
Bottolo L, et al. Bayesian detection of expression quantitative trait loci hot spots. Genetics. 2011;189:1449–1459. doi: 10.1534/genetics.111.131425. PubMed DOI PMC
Heinig M, et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature. 2010;467:460–464. doi: 10.1038/nature09386. PubMed DOI PMC
Johnson MR, et al. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat. Commun. 2015;6:6031. doi: 10.1038/ncomms7031. PubMed DOI PMC
Kang H, et al. Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep. 2014;8:1210–1224. doi: 10.1016/j.celrep.2014.07.032. PubMed DOI PMC
Matsumura S, et al. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J. Clin. Invest. 2005;115:599–609. doi: 10.1172/JCI22304. PubMed DOI PMC
Peterson JT, Li H, Dillon L, Bryant JW. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc. Res. 2000;46:307–315. doi: 10.1016/S0008-6363(00)00029-8. PubMed DOI
Schwanekamp JA, et al. TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS ONE. 2017;12:e0181945. doi: 10.1371/journal.pone.0181945. PubMed DOI PMC
Soond SM, Chantry A. Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFbeta signalling and EMT. Oncogene. 2011;30:2451–2462. doi: 10.1038/onc.2010.617. PubMed DOI PMC
Zou W, et al. The E3 ubiquitin ligase Wwp2 regulates craniofacial development through mono-ubiquitylation of Goosecoid. Nat. Cell Biol. 2011;13:59–65. doi: 10.1038/ncb2134. PubMed DOI PMC
Schmidt M, et al. Controlling the balance of fibroblast proliferation and differentiation: impact of Thy-1. J. Invest. Dermatol. 2015;135:1893–1902. doi: 10.1038/jid.2015.86. PubMed DOI
Horwitz AA, Affar ELB, Heine GF, Shi Y, Parvin JD. A mechanism for transcriptional repression dependent on the BRCA1 E3 ubiquitin ligase. Proc. Natl Acad. Sci. USA. 2007;104:6614–6619. doi: 10.1073/pnas.0610481104. PubMed DOI PMC
Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. Regulation of TGF-beta superfamily signaling by SMAD mono-ubiquitination. Cells. 2014;3:981–993. doi: 10.3390/cells3040981. PubMed DOI PMC
Tang LY, et al. Ablation of Smurf2 reveals an inhibition in TGF-beta signalling through multiple mono-ubiquitination of Smad3. EMBO J. 2011;30:4777–4789. doi: 10.1038/emboj.2011.393. PubMed DOI PMC
Xu L, Massague J. Nucleocytoplasmic shuttling of signal transducers. Nat. Rev. Mol. Cell Biol. 2004;5:209–219. doi: 10.1038/nrm1331. PubMed DOI
Inman GJ, Nicolas FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol. Cell. 2002;10:283–294. doi: 10.1016/S1097-2765(02)00585-3. PubMed DOI
Inman GJ, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharm. 2002;62:65–74. doi: 10.1124/mol.62.1.65. PubMed DOI
Schmierer B, Hill CS. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol. Cell Biol. 2005;25:9845–9858. doi: 10.1128/MCB.25.22.9845-9858.2005. PubMed DOI PMC
Nakamura Y, et al. Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25. Nat. Commun. 2011;2:251. doi: 10.1038/ncomms1242. PubMed DOI PMC
Yang Y, et al. E3 ligase WWP2 negatively regulates TLR3-mediated innate immune response by targeting TRIF for ubiquitination and degradation. Proc. Natl Acad. Sci. USA. 2013;110:5115–5120. doi: 10.1073/pnas.1220271110. PubMed DOI PMC
Maddika S, et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat. Cell Biol. 2011;13:728–733. doi: 10.1038/ncb2240. PubMed DOI PMC
Fukumoto C, et al. WWP2 is overexpressed in human oral cancer, determining tumor size and poor prognosis in patients: downregulation of WWP2 inhibits the AKT signaling and tumor growth in mice. Oncoscience. 2014;1:807–820. doi: 10.18632/oncoscience.101. PubMed DOI PMC
Kim SK, et al. Two genetic variants associated with plantar fascial disorders. Int J. Sports Med. 2018;39:314–321. doi: 10.1055/s-0044-100280. PubMed DOI
Styrkarsdottir U, et al. Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat. Genet. 2018;50:1681–1687. doi: 10.1038/s41588-018-0247-0. PubMed DOI
Khalil H, et al. Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 2017;127:3770–3783. doi: 10.1172/JCI94753. PubMed DOI PMC
Bernard K, et al. Metabolic reprogramming is required for myofibroblast contractility and differentiation. J. Biol. Chem. 2015;290:25427–25438. doi: 10.1074/jbc.M115.646984. PubMed DOI PMC
Selvarajah B, et al. Metabolic shift during TGF-β induced collagen synthesis. QJM. 2016;109:S3. doi: 10.1093/qjmed/hcu162. DOI
Lovisa S, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 2015;21:998–1009. doi: 10.1038/nm.3902. PubMed DOI PMC
Santiago JJ, et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev. Dyn. 2010;239:1573–1584. doi: 10.1002/dvdy.22280. PubMed DOI
Lo RS, Massague J. Ubiquitin-dependent degradation of TGF-beta-activated smad2. Nat. Cell Biol. 1999;1:472–478. doi: 10.1038/70258. PubMed DOI
Hill CS. Nucleocytoplasmic shuttling of Smad proteins. Cell Res. 2009;19:36–46. doi: 10.1038/cr.2008.325. PubMed DOI
Schnell JD, Hicke L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 2003;278:35857–35860. doi: 10.1074/jbc.R300018200. PubMed DOI
Trotman LC, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell. 2007;128:141–156. doi: 10.1016/j.cell.2006.11.040. PubMed DOI PMC
Inui M, et al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat. Cell Biol. 2011;13:1368–1375. doi: 10.1038/ncb2346. PubMed DOI
Tang LY, Zhang YE. Non-degradative ubiquitination in Smad-dependent TGF-beta signaling. Cell Biosci. 2011;1:43. doi: 10.1186/2045-3701-1-43. PubMed DOI PMC
Brooks CL, Li M, Gu W. Mechanistic studies of MDM2-mediated ubiquitination in p53 regulation. J. Biol. Chem. 2007;282:22804–22815. doi: 10.1074/jbc.M700961200. PubMed DOI PMC
Jia L, Sun Y. SCF E3 ubiquitin ligases as anticancer targets. Curr. Cancer Drug Targets. 2011;11:347–356. doi: 10.2174/156800911794519734. PubMed DOI PMC
Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26:484–498. doi: 10.1038/cr.2016.31. PubMed DOI PMC
Carvajal LA, et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl. Med. 2018;10:eaao3003. doi: 10.1126/scitranslmed.aao3003. PubMed DOI PMC
Ding L, et al. Inhibition of Skp2 suppresses the proliferation and invasion of osteosarcoma cells. Oncol. Rep. 2017;38:933–940. doi: 10.3892/or.2017.5713. PubMed DOI
Huang XL, et al. E3 ubiquitin ligase: a potential regulator in fibrosis and systemic sclerosis. Cell Immunol. 2016;306-307:1–8. doi: 10.1016/j.cellimm.2016.07.003. PubMed DOI
Segura AM, Frazier OH, Buja LM. Fibrosis and heart failure. Heart Fail. Rev. 2014;19:173–185. doi: 10.1007/s10741-012-9365-4. PubMed DOI
Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta. Cardiovasc. Ther. 2012;30:e30–e40. doi: 10.1111/j.1755-5922.2010.00228.x. PubMed DOI
Rintisch C, et al. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res. 2014;24:942–953. doi: 10.1101/gr.169029.113. PubMed DOI PMC
Martin JA, Wang Z. Next-generation transcriptome assembly. Nat. Rev. Genet. 2011;12:671–682. doi: 10.1038/nrg3068. PubMed DOI
Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3:1724–1735. doi: 10.1371/journal.pgen.0030161. PubMed DOI PMC
Heidecker B, et al. The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences. Eur. Heart J. 2010;31:1188–1196. doi: 10.1093/eurheartj/ehp549. PubMed DOI PMC
Hardin J, Mitani A, Hicks L, VanKoten B. A robust measure of correlation between two genes on a microarray. BMC Bioinformatics. 2007;8:220. doi: 10.1186/1471-2105-8-220. PubMed DOI PMC
Choi Y, Kendziorski C. Statistical methods for gene set co-expression analysis. Bioinformatics. 2009;25:2780–2786. doi: 10.1093/bioinformatics/btp502. PubMed DOI PMC