WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling

. 2019 Aug 09 ; 10 (1) : 3616. [epub] 20190809

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31399586

Grantová podpora
SP/10/10/28431 British Heart Foundation - United Kingdom
MC_U120097112 Medical Research Council - United Kingdom
FS/11/25/28740 British Heart Foundation - United Kingdom
CH/1992027/7163 British Heart Foundation - United Kingdom
MC_U120085815 Medical Research Council - United Kingdom

Odkazy

PubMed 31399586
PubMed Central PMC6689010
DOI 10.1038/s41467-019-11551-9
PII: 10.1038/s41467-019-11551-9
Knihovny.cz E-zdroje

Cardiac fibrosis is a final common pathology in inherited and acquired heart diseases that causes cardiac electrical and pump failure. Here, we use systems genetics to identify a pro-fibrotic gene network in the diseased heart and show that this network is regulated by the E3 ubiquitin ligase WWP2, specifically by the WWP2-N terminal isoform. Importantly, the WWP2-regulated pro-fibrotic gene network is conserved across different cardiac diseases characterized by fibrosis: human and murine dilated cardiomyopathy and repaired tetralogy of Fallot. Transgenic mice lacking the N-terminal region of the WWP2 protein show improved cardiac function and reduced myocardial fibrosis in response to pressure overload or myocardial infarction. In primary cardiac fibroblasts, WWP2 positively regulates the expression of pro-fibrotic markers and extracellular matrix genes. TGFβ1 stimulation promotes nuclear translocation of the WWP2 isoforms containing the N-terminal region and their interaction with SMAD2. WWP2 mediates the TGFβ1-induced nucleocytoplasmic shuttling and transcriptional activity of SMAD2.

Animal Gene Editing Laboratory BRC A*STAR20 Biopolis Way Singapore 138668 Republic of Singapore

Berlin Institute of Health 10178 Berlin Germany

Bristol Heart Institute Bristol Medical School University of Bristol Bristol BS2 89HW UK

Cardiovascular and Metabolic Sciences Max Delbrück Center for Molecular Medicine in the Helmholtz Association 13125 Berlin Germany

Cardiovascular Research Centre Royal Brompton and Harefield NHS Trust London SW3 6NP UK

Centro Nacional de Investigaciones Cardiovasculares CNIC 28029 Madrid Spain

Charité Universitätsmedizin 10117 Berlin Germany

Department of Emergency and Organ Transplantation University of Bari 70124 Bari Italy

Department of Medical Genetics University of Cambridge Cambridge CB2 0QQ UK

Division of Brain Sciences Imperial College Faculty of Medicine London W12 0NN UK

DZHK Partner Site Berlin 13347 Berlin Germany

Institute of Molecular and Cell Biology A*STAR 61 Biopolis Drive Singapore 138673 Republic of Singapore

Institute of Physiology Czech Academy of Sciences 142 00 Praha 4 Czech Republic

MRC Biostatistics Unit University of Cambridge Cambridge CB2 0SR UK

MRC London Institute of Medical Sciences Imperial College London W12 0NN UK

National Heart and Lung Institute Imperial College London London SW7 2AZ UK

National Heart Centre Singapore Singapore 169609 Republic of Singapore

Programme in Cardiovascular and Metabolic Disorders Duke NUS Medical School Singapore 169857 Republic of Singapore

SOC di Anatomia Patologica Ospedale San Giovanni di Dio 50123 Florence Italy

The Alan Turing Institute London NW1 2DB UK

Unit of Human Evolutionary Genetics Institute Pasteur 75015 Paris France

Erratum v

PubMed

Zobrazit více v PubMed

Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 2016;118:1021–1040. doi: 10.1161/CIRCRESAHA.115.306565. PubMed DOI PMC

Gulati A, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309:896–908. doi: 10.1001/jama.2013.1363. PubMed DOI

Garfinkel AC, Seidman JG, Seidman CE. Genetic pathogenesis of hypertrophic and dilated cardiomyopathy. Heart Fail. Clin. 2018;14:139–146. doi: 10.1016/j.hfc.2017.12.004. PubMed DOI PMC

Harvey PA, Leinwand LA. The cell biology of disease: cellular mechanisms of cardiomyopathy. J. Cell Biol. 2011;194:355–365. doi: 10.1083/jcb.201101100. PubMed DOI PMC

Gyongyosi M, et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur. J. Heart Fail. 2017;19:177–191. doi: 10.1002/ejhf.696. PubMed DOI PMC

Reddy S, et al. miR-21 is associated with fibrosis and right ventricular failure. JCI Insight. 2017;2:91625. doi: 10.1172/jci.insight.91625. PubMed DOI PMC

Rockey DC, Bell PD, Hill JA. Fibrosis—a common pathway to organ injury and failure. N. Engl. J. Med. 2015;372:1138–1149. doi: 10.1056/NEJMra1300575. PubMed DOI

Baum J, Duffy HS. Fibroblasts and myofibroblasts: what are we talking about? J. Cardiovasc. Pharm. 2011;57:376–379. doi: 10.1097/FJC.0b013e3182116e39. PubMed DOI PMC

Schafer S, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110–115. doi: 10.1038/nature24676. PubMed DOI PMC

Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ. Res. 2015;116:1269–1276. doi: 10.1161/CIRCRESAHA.116.305381. PubMed DOI

Wang Q, et al. Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenes Tissue Repair. 2011;4:4. doi: 10.1186/1755-1536-4-4. PubMed DOI PMC

Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-beta, WNT, and YAP/TAZ converge. Front. Med. (Lausanne) 2015;2:59. PubMed PMC

Leask A. TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc. Res. 2007;74:207–212. doi: 10.1016/j.cardiores.2006.07.012. PubMed DOI

Ross S, Hill CS. How the Smads regulate transcription. Int. J. Biochem. Cell Biol. 2008;40:383–408. doi: 10.1016/j.biocel.2007.09.006. PubMed DOI

Fan Z, Guan J. Antifibrotic therapies to control cardiac fibrosis. Biomater. Res. 2016;20:13. doi: 10.1186/s40824-016-0060-8. PubMed DOI PMC

Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ. Res. 2010;106:1675–1680. doi: 10.1161/CIRCRESAHA.110.217737. PubMed DOI

Gyorfi AH, Matei AE, Distler JHW. Targeting TGF-beta signaling for the treatment of fibrosis. Matrix Biol. 2018;68-69:8–27. doi: 10.1016/j.matbio.2017.12.016. PubMed DOI

Moreno-Moral A, Pesce F, Behmoaras J, Petretto E. Systems genetics as a tool to identify master genetic regulators in complex disease. Methods Mol. Biol. 2017;1488:337–362. doi: 10.1007/978-1-4939-6427-7_16. PubMed DOI

Hubner N, et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 2005;37:243–253. doi: 10.1038/ng1522. PubMed DOI

Petretto E, et al. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat. Genet. 2008;40:546–552. doi: 10.1038/ng.134. PubMed DOI PMC

Mancini M, et al. Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat. Basic Res. Cardiol. 2013;108:316. doi: 10.1007/s00395-012-0316-y. PubMed DOI

Langley SR, et al. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans. Cardiovasc. Res. 2013;97:653–665. doi: 10.1093/cvr/cvs329. PubMed DOI PMC

Pravenec M, et al. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat. Genet. 2008;40:952–954. doi: 10.1038/ng.164. PubMed DOI

Moreno-Moral A, Mancini M, D’Amati G, Camici P, Petretto E. Transcriptional network analysis for the regulation of left ventricular hypertrophy and microvascular remodeling. J. Cardiovasc. Transl. Res. 2013;6:931–944. doi: 10.1007/s12265-013-9504-x. PubMed DOI

Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC

Heinig M, et al. Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy. Genome Biol. 2017;18:170. doi: 10.1186/s13059-017-1286-z. PubMed DOI PMC

Rotival M, Petretto E. Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits. Brief. Funct. Genomics. 2014;13:66–78. doi: 10.1093/bfgp/elt030. PubMed DOI

Zhao T, et al. Platelet-derived growth factor-D promotes fibrogenesis of cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 2013;304:H1719–H1726. doi: 10.1152/ajpheart.00130.2013. PubMed DOI PMC

Pradegan N, et al. Myocardial histopathology in late-repaired and unrepaired adults with tetralogy of Fallot. Cardiovasc. Pathol. 2016;25:225–231. doi: 10.1016/j.carpath.2016.02.001. PubMed DOI

Burke MA, et al. Molecular profiling of dilated cardiomyopathy that progresses to heart failure. JCI Insight. 2016;1:e86898. doi: 10.1172/jci.insight.86898. PubMed DOI PMC

Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19:1745–1754. doi: 10.1093/emboj/19.8.1745. PubMed DOI PMC

Lachmann A, et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics. 2010;26:2438–2444. doi: 10.1093/bioinformatics/btq466. PubMed DOI PMC

Bottolo L, et al. Bayesian detection of expression quantitative trait loci hot spots. Genetics. 2011;189:1449–1459. doi: 10.1534/genetics.111.131425. PubMed DOI PMC

Heinig M, et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature. 2010;467:460–464. doi: 10.1038/nature09386. PubMed DOI PMC

Johnson MR, et al. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat. Commun. 2015;6:6031. doi: 10.1038/ncomms7031. PubMed DOI PMC

Kang H, et al. Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep. 2014;8:1210–1224. doi: 10.1016/j.celrep.2014.07.032. PubMed DOI PMC

Matsumura S, et al. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J. Clin. Invest. 2005;115:599–609. doi: 10.1172/JCI22304. PubMed DOI PMC

Peterson JT, Li H, Dillon L, Bryant JW. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc. Res. 2000;46:307–315. doi: 10.1016/S0008-6363(00)00029-8. PubMed DOI

Schwanekamp JA, et al. TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS ONE. 2017;12:e0181945. doi: 10.1371/journal.pone.0181945. PubMed DOI PMC

Soond SM, Chantry A. Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFbeta signalling and EMT. Oncogene. 2011;30:2451–2462. doi: 10.1038/onc.2010.617. PubMed DOI PMC

Zou W, et al. The E3 ubiquitin ligase Wwp2 regulates craniofacial development through mono-ubiquitylation of Goosecoid. Nat. Cell Biol. 2011;13:59–65. doi: 10.1038/ncb2134. PubMed DOI PMC

Schmidt M, et al. Controlling the balance of fibroblast proliferation and differentiation: impact of Thy-1. J. Invest. Dermatol. 2015;135:1893–1902. doi: 10.1038/jid.2015.86. PubMed DOI

Horwitz AA, Affar ELB, Heine GF, Shi Y, Parvin JD. A mechanism for transcriptional repression dependent on the BRCA1 E3 ubiquitin ligase. Proc. Natl Acad. Sci. USA. 2007;104:6614–6619. doi: 10.1073/pnas.0610481104. PubMed DOI PMC

Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. Regulation of TGF-beta superfamily signaling by SMAD mono-ubiquitination. Cells. 2014;3:981–993. doi: 10.3390/cells3040981. PubMed DOI PMC

Tang LY, et al. Ablation of Smurf2 reveals an inhibition in TGF-beta signalling through multiple mono-ubiquitination of Smad3. EMBO J. 2011;30:4777–4789. doi: 10.1038/emboj.2011.393. PubMed DOI PMC

Xu L, Massague J. Nucleocytoplasmic shuttling of signal transducers. Nat. Rev. Mol. Cell Biol. 2004;5:209–219. doi: 10.1038/nrm1331. PubMed DOI

Inman GJ, Nicolas FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol. Cell. 2002;10:283–294. doi: 10.1016/S1097-2765(02)00585-3. PubMed DOI

Inman GJ, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharm. 2002;62:65–74. doi: 10.1124/mol.62.1.65. PubMed DOI

Schmierer B, Hill CS. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol. Cell Biol. 2005;25:9845–9858. doi: 10.1128/MCB.25.22.9845-9858.2005. PubMed DOI PMC

Nakamura Y, et al. Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25. Nat. Commun. 2011;2:251. doi: 10.1038/ncomms1242. PubMed DOI PMC

Yang Y, et al. E3 ligase WWP2 negatively regulates TLR3-mediated innate immune response by targeting TRIF for ubiquitination and degradation. Proc. Natl Acad. Sci. USA. 2013;110:5115–5120. doi: 10.1073/pnas.1220271110. PubMed DOI PMC

Maddika S, et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat. Cell Biol. 2011;13:728–733. doi: 10.1038/ncb2240. PubMed DOI PMC

Fukumoto C, et al. WWP2 is overexpressed in human oral cancer, determining tumor size and poor prognosis in patients: downregulation of WWP2 inhibits the AKT signaling and tumor growth in mice. Oncoscience. 2014;1:807–820. doi: 10.18632/oncoscience.101. PubMed DOI PMC

Kim SK, et al. Two genetic variants associated with plantar fascial disorders. Int J. Sports Med. 2018;39:314–321. doi: 10.1055/s-0044-100280. PubMed DOI

Styrkarsdottir U, et al. Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat. Genet. 2018;50:1681–1687. doi: 10.1038/s41588-018-0247-0. PubMed DOI

Khalil H, et al. Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 2017;127:3770–3783. doi: 10.1172/JCI94753. PubMed DOI PMC

Bernard K, et al. Metabolic reprogramming is required for myofibroblast contractility and differentiation. J. Biol. Chem. 2015;290:25427–25438. doi: 10.1074/jbc.M115.646984. PubMed DOI PMC

Selvarajah B, et al. Metabolic shift during TGF-β induced collagen synthesis. QJM. 2016;109:S3. doi: 10.1093/qjmed/hcu162. DOI

Lovisa S, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 2015;21:998–1009. doi: 10.1038/nm.3902. PubMed DOI PMC

Santiago JJ, et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev. Dyn. 2010;239:1573–1584. doi: 10.1002/dvdy.22280. PubMed DOI

Lo RS, Massague J. Ubiquitin-dependent degradation of TGF-beta-activated smad2. Nat. Cell Biol. 1999;1:472–478. doi: 10.1038/70258. PubMed DOI

Hill CS. Nucleocytoplasmic shuttling of Smad proteins. Cell Res. 2009;19:36–46. doi: 10.1038/cr.2008.325. PubMed DOI

Schnell JD, Hicke L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 2003;278:35857–35860. doi: 10.1074/jbc.R300018200. PubMed DOI

Trotman LC, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell. 2007;128:141–156. doi: 10.1016/j.cell.2006.11.040. PubMed DOI PMC

Inui M, et al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat. Cell Biol. 2011;13:1368–1375. doi: 10.1038/ncb2346. PubMed DOI

Tang LY, Zhang YE. Non-degradative ubiquitination in Smad-dependent TGF-beta signaling. Cell Biosci. 2011;1:43. doi: 10.1186/2045-3701-1-43. PubMed DOI PMC

Brooks CL, Li M, Gu W. Mechanistic studies of MDM2-mediated ubiquitination in p53 regulation. J. Biol. Chem. 2007;282:22804–22815. doi: 10.1074/jbc.M700961200. PubMed DOI PMC

Jia L, Sun Y. SCF E3 ubiquitin ligases as anticancer targets. Curr. Cancer Drug Targets. 2011;11:347–356. doi: 10.2174/156800911794519734. PubMed DOI PMC

Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26:484–498. doi: 10.1038/cr.2016.31. PubMed DOI PMC

Carvajal LA, et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl. Med. 2018;10:eaao3003. doi: 10.1126/scitranslmed.aao3003. PubMed DOI PMC

Ding L, et al. Inhibition of Skp2 suppresses the proliferation and invasion of osteosarcoma cells. Oncol. Rep. 2017;38:933–940. doi: 10.3892/or.2017.5713. PubMed DOI

Huang XL, et al. E3 ubiquitin ligase: a potential regulator in fibrosis and systemic sclerosis. Cell Immunol. 2016;306-307:1–8. doi: 10.1016/j.cellimm.2016.07.003. PubMed DOI

Segura AM, Frazier OH, Buja LM. Fibrosis and heart failure. Heart Fail. Rev. 2014;19:173–185. doi: 10.1007/s10741-012-9365-4. PubMed DOI

Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta. Cardiovasc. Ther. 2012;30:e30–e40. doi: 10.1111/j.1755-5922.2010.00228.x. PubMed DOI

Rintisch C, et al. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res. 2014;24:942–953. doi: 10.1101/gr.169029.113. PubMed DOI PMC

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat. Rev. Genet. 2011;12:671–682. doi: 10.1038/nrg3068. PubMed DOI

Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3:1724–1735. doi: 10.1371/journal.pgen.0030161. PubMed DOI PMC

Heidecker B, et al. The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences. Eur. Heart J. 2010;31:1188–1196. doi: 10.1093/eurheartj/ehp549. PubMed DOI PMC

Hardin J, Mitani A, Hicks L, VanKoten B. A robust measure of correlation between two genes on a microarray. BMC Bioinformatics. 2007;8:220. doi: 10.1186/1471-2105-8-220. PubMed DOI PMC

Choi Y, Kendziorski C. Statistical methods for gene set co-expression analysis. Bioinformatics. 2009;25:2780–2786. doi: 10.1093/bioinformatics/btp502. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace